
Design Lab 6	 6.01 – Fall 2011
 
Sizable Following 

Goals:	 We have seen that the simple proportional controller does not provide satis­
factory performance in guiding a robot to follow along a wall. In this lab, 
we investigate two improved controllers for the WallFollower: 
•	 A delayPlusProp controller which depends on the previous distance 

to the wall as well as the current one 
•	 An anglePlusProp controller which depends on the current angle to 

the wall, as well as the current distance 

1	 Introduction 
Resources: This lab should be done with a partner. Each partnership should have a robot and lab 
laptop or a personal laptop that reliably runs soar. Do athrun 6.01 getFiles to get the files 
for this lab, which will be in Desktop/6.01/designLab06, or get the software distribution from 
the course web page. The relevant files in the distribution are: 

•	 delayPlusPropBrainSkeleton.py: template of brain for delay-plus-proportional controller. 

•	 anglePlusPropBrainSkeleton.py: template of brain for angle-plus-proportional controller. 

•	 designLab06Work.py: file with imports for making system functions and for optimization. 

•	 See also Chapter 5 of the course notes. 

Be sure to mail all of your code and plots to your partner. Each of you will need to bring 
copies with you to your interview. 

do[n−1]

do[n]

V
T

θ[n−1]

di[n] = 0.5 m

w
a
ll

d
e
si
re
d

p
a
th

Last week, we used a proportional controller to move the robot paral­
lel to a wall while trying to maintain a constant, desired distance from 
the wall. The forward velocity V was set to 0.1 m/s and the angular 
velocity ω[n] was proportional to the error signal e[n], which was 
the difference between the desired distance di[n] and current dis­
tance do[n]. Unfortunately, no value of the proportionality constant 
k gave good performance. Large values of k gave fast oscillations and 
small values of k gave large errors, especially when the initial angle 
of the robot was not parallel to the wall. In this lab, we will develop 
two new types of controllers to achieve better performance; the first 
controller depends on the previous distance to the wall as well as the current one, and the second 
controller depends on the current angle to the wall, as well as the current distance.
 

Some of the software and design labs contain the command athrun 6.01 getFiles. Please disregard this instruction;
the same files are available on the 6.01 OCW Scholar site as a .zip file, labeled Code for [Design or Software Lab number].




1
 

http:designLab06Work.py
http:anglePlusPropBrainSkeleton.py
http:delayPlusPropBrainSkeleton.py


We refer to this controller as “delay plus proportional.” The system still has the same form as the 
one from last week: 

controller plant 1 plant 2+Di Do
E Ω Θ

−

Design Lab 6	 6.01 Fall 2011 

2	 Remembrance of Things Past 

Objective:	 Make a controller that depends on the previous distance to the wall as well 
as the current one, using the following steps: 
•	 Build a model of the delay-plus-proportional controller-plant-sensor 

system, using the SystemFunction class. 
•	 Use the model to find the best gains. 
•	 Build a corresponding controller for the robot. 
•	 Test it in simulation for the various gains. 
•	 Test it on a real robot. 

A better wall-following controller can be made by processing the error signal E in a more sophis­
ticated way than we did in the previous lab. For example, we could adjust the angular velocity 
using some combination of the present and previous values of the error, 

ω[n] = k1e[n] + k2e[n − 1]. 

The subsystems that represent robot locomotion (plant 1 and plant 2) and the sensor (modeled as 
a wire) are the same. Only the controller has changed. 

Detailed guidance: 

Check Yourself 1. Draw a block diagram of the controller. 

Remember that ω is lower-case Ω. 

2
 

http://ocw.mit.edu/ans7870/6/6.01sc/documentation/sf-module.html


Design Lab 6	 6.01 Fall 2011
 

2.1 Model 

Step 1.	 Use the Python SystemFunction class to model and analyze the behavior of whole system when 
the robot has a delay-plus-proportional controller, as follows. 
•	 Open the file designLab06Work.py in idle and use it for this part of the lab. 
•	 Write a Python procedure delayPlusPropModel, that takes gains k1 and k2 as input and re­

turns a SystemFunction that describes the behavior of the system when the robot has a delay­
plus-proportional controller. You can assume that T = 0.1 seconds and V = 0.1 m/s. 

You can use sf.FeedforwardAdd, and sf.FeedforwardSubtract, two combinators for sim­
ple addition of systems, as well as any of the other sf combinators. They are all documented 
in the sf module page of the Software Documentation section of the Reference Material from 
the course web page. 

Use your answer to last week’s problem Wk.5.3.4 to help with this. 

Wk.6.1.1. Part 1 Enter your delayPlusPropModel code into the tutor. 

2.2 Picking gains 

We want to pick the values of k1 and k2 to get the best stable behavior. As we saw in lecture, 
the speed of convergence is improved by reducing the magnitude of the dominant pole. Let’s 
consider the case of a single gain first, in the system you modeled last week. You could construct a 
function f(k) that computes the magnitude of the system’s dominant pole. Now, you want to find 
the value of k that produces the minimum value of this function. 

Finding minima of a function is an optimization process, which can be accomplished using rou­
tines from the lib601 optimize module, as documented in the Homework 2 assignment. This 
documentation is reproduced below for your convenience. 

Given a function f(x), how can we find a value x ∗ such that f(x ∗) : f(x) for all x? If f is differen­
tiable, then we could do this relatively easily by taking the derivative, setting it to 0 and solving 
for x. This gets tricky when the function f is complicated, when there may be multiple minima, 
and/or when we wish to extend to functions with multiple arguments. For functions that aren’t 
differentiable (such as those involving max or abs), there is no straightforward mathematical ap­
proach at all. In one dimension, if we know a range of values of x that is likely to contain the 
minimum, we can plausibly sample different values of x in that range, evaluate f at each of them, 
and return the sampled x for which f(x) is minimized. 

The procedure optimize.optOverLine does this. It is part of the lib601 optimize module, and 
is called as follows: 

optimize.optOverLine(objective, xmin, xmax, numXsteps, compare) 

•	 objective: a procedure that takes a single numeric argument (x in our example) and returns 
a numeric value (f(x) in our example), 

•	 xmin, xmax: a range of values for the argument, 

3
 

http://ocw.mit.edu/ans7870/6/6.01sc/documentation/optimize-module.html
http://ocw.mit.edu/ans7870/6/6.01sc/documentation/sf-module.html
http://ocw.mit.edu/ans7870/6/6.01sc/documentation/optimize-module.html
http://ocw.mit.edu/ans7870/6/6.01sc/documentation/optimize-module.html
http://ocw.mit.edu/ans7870/6/6.01sc/documentation/sf-module.html


Design Lab 6	 6.01 Fall 2011
 

•	 numXsteps: how many points to test within the range, 
•	 compare: an optional comparison function that defaults to be operator.lt, which is the less 

than, < , operator in Python. This means that if you don’t specify the compare argument, the 
procedure will return the value that minimizes the objective. 

This procedure returns a tuple (bestObjValue, bestX) consisting of the best value of the ob­
jective (f(x ∗) in our example) and the x value that corresponds to it (x ∗ in our example). 

Check Yourself 2. Here are graphs of two functions. Use optimize.optOverLine to find the 
minimum of one of them. The function f has a minimum at x = 0.5 of value 
−0.25; the function h has a minimum at x = 1.66 with value −0.88. 

-1.0 -0.5 0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

-1 1 2 3

5

10

15

20

25

30

f(x) = x2 − x h(x) = x5 − 7x3 + 6x2 + 2 

Step 2.	 Consider four different values of k1: 10, 30, 100, and 300. For each value of k1, use opti-
mize.optOverLine to determine the value of k2 that minimizes the magnitude of the least stable 
pole. 

Be sure to test both positive and negative values of k2, be sure that you have tested a large enough 
range, and be sure that, ultimately, you have sampled at a granularity of at least 0.1. Rather than 
setting up one long minimization run with a wide range and a small granularity, it’s better to start 
with a coarse granularity to find the right rough value, and then search more finely around that. 
Hint: the magnitude of k2 should not be bigger than that of k1. 

We encourage you to define and use the bestk2 procedure stub that is included in design­
Lab06Work.py for this purpose. 

k1 k2 magnitude of dominant pole 

10 

30 

100 

300 

4
 



Design Lab 6	 6.01 Fall 2011
 

Wk.6.1.1. Part 2 Enter the values of k2 and the magnitude of the associated dominant pole 
that you found for each of the values of k1 above. 

2.3 Brain 

Step 3.	 Implement the delay plus proportional controller by editing the WallFollower state machine 
class in delayPlusPropBrainSkeleton.py. Think very carefully about what you want to out­
put in the first time step. 

As before, the brain has two parts connected in cascade. The first part is an instance of the 
Sensor class, which implements a state machine whose input is a sequence of instances of 
io.SensorInput and whose output is the perpendicular distance to the wall. The perpendicular 
distance is calculated by getDistanceRight in the sonarDist module by using triangulation 
(assuming the wall is locally straight). If sensors 6 and 7 both hit the wall, then the value is fairly 
accurate. If only one of them hits it, then it’s less accurate. If neither sensor hits the wall, then it 
returns 1.5. The code for the Sensor class is provided. 

The second part of the brain is an instance of the WallFollower class. You should provide code 
so that the WallFollower class implements a state machine whose input is the perpendicular 
distance to the wall and whose output is an instance of the class io.Action. Think carefully about 
what you are going to store in the state of the machine, and how you will initialize startState. 

The brain is set up so that whenever you click Stop, a plot will be displayed, showing how the 
perpendicular distance to the right wall changes as a function of time. To save this plot, take a 
screen shot, as described on our web page. This plot will disappear once you reload the brain. 

Step 4.	 Run your brain in the world wallTestWorld.py. Determine how the behavior of the system is 
affected by the controller gains k1,k2. Use only the gains that you determined in the previous 
step. Pay attention to the distance values being printed out by the brain. Save plots to illustrate the 
performance of each of your optimized gain pairs k1, k2. Choose names for these files so that 
you can remember the parameters that were used to generate each one. 

Keep the files for your oral interview. 

Don’t change your controller to try to make it work better! Instead, try to understand the different 
kinds of failures that can happen and how they depend on the choice of gain or initial condition. 

Check Yourself 3. Which of the four gain pairs work best in simulation? 

k1 =	 k2 = 

Which gains cause bad behavior? 

Step 5.	 Connect your lab laptop to a robot. You may need a long ethernet cable (or ask a staff member for 
help switching to the wireless network). 

5
 

http://ocw.mit.edu/ans7870/6/6.01sc/documentation/io.SensorInput-class.html
http://ocw.mit.edu/ans7870/6/6.01sc/documentation/sonarDist-module.html
http://ocw.mit.edu/ans7870/6/6.01sc/documentation/io.Action-class.html


Design Lab 6	 6.01 Fall 2011
 

Go to the edge of the room or out to the hallway to find a long (at least two bubble-wrapped boards) 
wall to work with. 

Run your brain on a real robot. Get a measuring stick and be sure to start the robot at the same 
initial conditions (0.5 meters from the wall and rotated π/8 radians to the left) as in the simulator. 
Pay attention to the distance values being printed out by the brain. 

Save a plot for each of your calculated gain pairs. Keep the files for your oral interview. 

Check Yourself 4. Which of the four gain pairs work best on a robot? 

k1 =	 k2 = 

Are the best gains the same as in simulation? 
Which gains cause bad behavior? 

Checkoff 1.	 Wk.6.1.2: Show a staff member plots for the simulated and real robot runs, 
and discuss their relationship. How is the robot’s behavior related to the 
magnitude of the dominant pole, for each of the gain pairs? 

Explain how you chose the starting state of your controller. 

Be sure both partners have the files. 

3	 If we are facing in the right direction, all we have to do is keep on 
walking 

Objective:	 Make a controller that depends on the current angle to the wall, as well as 
the current distance, using the following steps: 
•	 Build a model of the angle-plus-proportional controller-plant-sensor 

system, using the SystemFunction class. 
•	 Use the model to find the best gains. 
•	 Build a corresponding controller for the robot. 
•	 Test it in simulation for the various gains. 
•	 Test it on a real robot. 

Why does the delay-plus-proportional controller from the previous section behave better than the 
proportional controller from last week? The only difference is access to e[n − 1]. So why should 
old information be helpful? A related issue is why the best values of −k2 were just a bit smaller 
than those for k1. 

A better way to think about the delay-plus-proportional controller is as proportional-plus­
derivative, where the derivative here is the first difference. As we will see below, if we 

6
 



Design Lab 6	 6.01 Fall 2011
 

re-parameterize the gains in terms of differences instead of delays, then the relation between the 
gains (k2 = −k1 + €) is no longer mysterious. 

For this particular problem, the difference e[n] − e[n − 1] 

e[n−1]

e[n]

do[n−1]

do[n]

V
T

θ[n−1]

di[n] = 0.5 m

w
a
ll

d
e
si
re
d

p
a
th

can be 
interpreted graphically in terms of the angle θ[n − 1] (see right fig­
ure). Thus the delay-plus-proportional controller can base the next 
angular velocity (its output) on both the position AND angle of the 
robot. Notice however that the information about position is for 
time n while the information about angle is for time n − 1. 

Our robot has more than just one sensor – it actually has eight 
sonars arranged at slightly different angles – so we can measure 
the angle directly. How well could a control system work if it had 
up-to-date information about both position and angle? We can 
answer this question by analyzing an angle-plus-proportional controller: 

ω[n] = k3(di[n] − do[n]) + k4(θd − θ[n]) 

where θd = 0 represents the desired angle (as measured relative to the wall), so that 

ω[n] = k3e[n] − k4θ[n] 

as shown in the following block diagram.
 

+ +k3

k4

plant 1 plant 2
− −

Di Do
E Ω Θ

Notice that this controller has a feedback loop to control the angle Θ that is inside a second feedback 
loop to control the distance D0. 

Detailed guidance: 

3.1 Model 

Step 6.	 In designLab06Work.py, write a Python procedure anglePlusPropModel that takes gains 
k3 and k4 as input and returns a SystemFunction that describes the system with angle-plus­
proportional control. Assume that T = 0.1 seconds and V = 0.1 m/s. 

Wk.6.1.3 Part 1 Enter your anglePlusPropModel code into the tutor. 

Step 7.	 For k3 equal to 1, 3, 10, and 30, determine values of k4 that minimize the magnitude of the least 
stable pole of the angle-plus-proportional system. 

7
 



Design Lab 6	 6.01 Fall 2011
 

k3 k4 magnitude of dominant pole
 

1
 

3
 

10
 

30
 

Wk.6.1.3 Part 2 Enter the values of k4 and the magnitude of the associated dominant pole 
that you found for each of the values of k3 above. 

3.2 Brain 

Step 8.	 Implement the proportional plus angle controller by editing the WallFollower state machine 
class in anglePlusPropBrainSkeleton.py. 

As before, the brain has two parts connected in cascade. The first part is an instance of the Sensor 
class, which implements a state machine whose input is a sequence of instances of SensorInputs 
and whose output is a sequence of pairs of the perpendicular distance to the wall on the right 
and the angle to the wall. 

The second part of the brain is an instance of the WallFollower class. You should provide code so 
that the WallFollower class implements a state machine whose input is a pair of the perpendic­
ular distance to the wall on the right and the angle to the wall and whose output is an instance 
of the class io.Action. 

Notice that if sonar 6 or 7 is out of range, then we cannot calculate the angle, and the second 
component of the output of the Sensor machine will be None. When that happens, your brain 
should set the angular velocity to 0. 

Step 9.	 Test that your brain works in the soar simulator with the wallTestWorld.py world. Save a plot 
for each of your calculated gain pairs. Keep the files for your oral interview. 

Check Yourself 5. Which of the four gain pairs work best in simulation? 

k3 =	 k4 = 

Which gains cause bad behavior? 

8
 



Design Lab 6	 6.01 Fall 2011
 

Step 10.	 Go to the edge of the room or out to the hallway to find a long (at least two bubble-wrapped boards) 
wall to work with. 

Run your brain on a real robot. Get a measuring stick and be sure to start the robot at the same 
initial conditions (0.5 meters from the wall and rotated π/8 radians to the left) as in the simulator. 
Pay attention to the distance values being printed out by the brain. Save a plot for each of your 
calculated gain pairs. Keep the files for your oral interview. 

Check Yourself 6. Which of the four gain pairs work best on a robot? 

k3 =	 k4 = 

Are the best gains the same as in simulation? 
Which gains cause bad behavior? 

Checkoff 2. Wk.6.1.4: Show a staff member plots for the simulated and real robot runs, 
and discuss their relationship. How is the robot’s behavior related to the 
magnitude of the dominant pole, for each of the gain pairs? 

Which controller (delay-plus-proportional or angle-plus-proportional) per­
forms better? Explain why. 

Be sure both partners have the files. 

9
 



MIT OpenCourseWare 
http://ocw.mit.edu 

6.01SC Introduction to Electrical Engineering and Computer Science 
Spring 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

