Problem Wk.4.2: Nano Quiz

This problem has been submitted previously; no changes will be saved.
Due date: 2/24, 9:50am

Do all parts of this problem and then click Submit. There is only one Submit button, you should only do that when you are finished with all the parts of the problem.

Do not try to start another log in, you will lose what you typed.
There is a limited checking budget ($\mathbf{3 0}$ checks) on this quiz.
You have 15 minutes. You must click submit before:

2/24, 9:50am

Part 1: Constructing a Signal 1

Enter a Python class definition for the following Triangle signal, which takes a positive argument h which defines the height of the triangle. Your class should be a subclass of the Signal class, as defined in the software lab 3 handout.

The constructor Triangle (h) must produce a signal is equal to

- $\mathrm{h}-\mathrm{n} \mid$ for $-\mathrm{h}<\mathrm{n}<\mathrm{h}$
- 0 otherwise
note that $|n|$ is the absolute value of n.

```
class Triangle(Signal):
    def __init__(self, h):
        self.h = h
    def sample(self,n):
        if -self.h<n<0:
            return self.h+n
        if 0<=n<self.h:
            return self.h-n
        return 0
```

This is the answer we wrote:

```
class Triangle(Signal):
    def __init__(self, h):
        self.h = max(h,0)
    def sample(self,n):
        if (abs(n)>self.h):
            return 0
        else:
            return self.h-abs(n)
```


Part 2: Constructing a Signal from other Signals

Enter a Python expression (and set it equal to trapezoid), to construct the following signal.
trapezoid: the signal is equal to

- 0 for $\mathrm{n}<=0$
- 1 for $\mathrm{n}=1$
- 2 for $2<=n<=6$
- 1 for $\mathrm{n}=7$
- 0 for $n>=8$

Your answer should use the Triangle signal defined in Part 1, and any of:
ConstantSignal, UnitSampleSignal, CosineSignal, StepSignal, SummedSignal, ScaledSignal, R, Rn and polyR (defined in software lab 3 handout). If you need to construct a polynomial, use poly. Polynomial([...]).

```
# Use any of: Triangle, ConstantSignal, UnitSampleSignal, CosineSignal,
StepSignal,
# SummedSignal, ScaledSignal, R, Rn and polyR (defined in sw 4 handout).
# They are all defined for you already.
trapezoid = SummedSignal(Rn(Triangle(4),4),-1*Rn(Triangle(2),4))
```

This is the answer we wrote:

```
trapezoid = SummedSignal(SummedSignal(Rn(Triangle(2),2),
                                    Rn(Triangle(2),4)),
    Rn(Triangle(2),6))
# Another way of doing it.
#trapezoid = polyR(Triangle(2), poly.Polynomial([1, 0, 1, 0, 1, 0, 0]))
```

24 checks left Check

Part 3: Enable Submit

Current time is: $\mathbf{3 / 1 / 2 0 1 1 , ~ 9 : 1 2 p m}$
Click Submit before: 2/24, 9:50am
The Check button will update the current time.

Enter Done below

[] (\otimes)

and click Submit.

If this problem is submitted past the due time, this subproblem will be marked incorrect.

```
24 checks left Check
```

This is a multi-part problem, each part has its own Save and Check buttons but there is ONLY ONE Submit button for the WHOLE problem. Finish working on all the parts before you click on Submit.
Get Answers
01

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

