6.01: Introduction to EECS I

Signals and Systems

February 15, 2011

6.01: Introduction to EECS I

The intellectual themes in 6.01 are recurring themes in EECS:

- design of complex systems
- modeling and controlling physical systems
- augmenting physical systems with computation
- building systems that are robust to uncertainty

Intellectual themes are developed in context of a mobile robot.

Goal is to convey a distinct perspective about engineering.

Analyzing (and Predicting) Behavior

Today we will start to develop tools to analyze and predict behavior.

Example (design Lab 2): use sonar sensors (i.e., currentDistance) to move robot desiredDistance from wall.

Module 1 Summary: Software Engineering

Focused on abstraction and modularity in software engineering.
Topics: procedures, data structures, objects, state machines
Lab Exercises: implementing robot controllers as state machines

Abstraction and Modularity: Combinators
Cascade: make new SM by cascading two SM's
Parallel: make new SM by running two SM's in parallel
Select: combine two inputs to get one output

Themes: PCAP
Primitives - Combination - Abstraction - Patterns

Module 2 Preview: Signals and Systems

Focus next on analysis of feedback and control systems.
Topics: difference equations, system functions, controllers.
Lab exercises: robotic steering

Themes: modeling complex systems, analyzing behaviors
Make the forward velocity proportional to the desired displacement.

desiredDistance
>>> class wallFinder(sm.SM) :
>>> class wallFinder(sm.SM) :
... startState = None
... startState = None
... def getNextValues(self, state, inp):
... def getNextValues(self, state, inp):
... desiredDistance = 0.5
... desiredDistance = 0.5
... currentDistance = inp.sonars[3]
... currentDistance = inp.sonars[3]
... return (state,io.Action(fvel=?, rvel=0))
... return (state,io.Action(fvel=?, rvel=0))
Find an expression for fvel.

Example: Mass and Spring

Example: Cell Phone System

Check Yourself

Example: Tanks

Signals and Systems: Widely Applicable

The Signals and Systems approach has broad application: electrical, mechanical, optical, acoustic, biological, financial, ...

Signals and Systems: Modular

The representation does not depend upon the physical substrate.
sound in

focuses on the flow of information, abstracts away everything else

The Signals and Systems Abstraction

Our goal is to develop representations for systems that facilitate analysis.

Examples:

- Does the output signal overshoot? If so, how much?
- How long does it take for the output signal to reach its final value?

Difference Equations

Difference equations are an excellent way to represent discrete-time systems.

Example:

$$
y[n]=x[n]-x[n-1]
$$

Difference equations can be applied to any discrete-time system; they are mathematically precise and compact.

Signals and Systems: Hierarchical

Representations of component systems are easily combined.
Example: cascade of component systems

Composite system

Component and composite systems have the same form, and are analyzed with same methods.

Continuous and Discrete Time

Inputs and outputs of systems can be functions of continuous time

or discrete time.

We will focus on discrete-time systems.

Difference Equations

Difference equations are mathematically precise and compact.
Example:

$$
y[n]=x[n]-x[n-1]
$$

Let $x[n]$ equal the "unit sample" signal $\delta[n]$,
$\delta[n]= \begin{cases}1, & \text { if } n=0 ; \\ 0, & \text { otherwise } .\end{cases}$

We will use the unit sample as a "primitive" (building-block signal) to construct more complex signals.

Step-By-Step Solutions

Difference equations are convenient for step-by-step analysis

Find $y[n]$ given $x[n]=\delta[n]$:

$$
\begin{array}{ll}
y[n]=x[n]-x[n-1] & \\
y[-1]=x[-1]-x[-2] & =0-0=0 \\
y[0]=x[0]-x[-1] & =1-0=1 \\
y[1]=x[1]-x[0] & =0-1=-1 \\
y[2]=x[2]-x[1] & =0-0=0 \\
y[3]=x[3]-x[2] & =0-0=0
\end{array}
$$

Step-By-Step Solutions

Block diagrams are also useful for step-by-step analysis.

Represent $y[n]=x[n]-x[n-1]$ with a block diagram: start "at rest"

From Samples to Signals

Lumping all of the (possibly infinite) samples into a single object - the signal - simplifies its manipulation.

This lumping is analogous to

- representing coordinates in three-space as points
- representing lists of numbers as vectors in linear algebra
- creating an object in Python

Multiple Representations of Discrete-Time Systems

Block diagrams are useful alternative representations that highlight visual/graphical patterns.

Difference equation:

$$
y[n]=x[n]-x[n-1]
$$

Block diagram:

Same input-output behavior, different strengths/weaknesses:

- difference equations are mathematically compact
- block diagrams illustrate signal flow paths

Check Yourself

DT systems can be described by difference equations and/or block diagrams.

Difference equation:

$$
y[n]=x[n]-x[n-1]
$$

Block diagram:

In what ways are these representations different?

From Samples to Signals

Operators manipulate signals rather than individual samples.

Nodes represent whole signals (e.g., X and Y).
The boxes operate on those signals:

- Delay $=$ shift whole signal to right 1 time step
- Add $=$ sum two signals
- $\quad-1$: multiply by -1

Signals are the primitives.
Operators are the means of combination.

Operator Notation

Symbols can now compactly represent diagrams.
Let \mathcal{R} represent the right-shift operator:

$$
Y=\mathcal{R}\{X\} \equiv \mathcal{R} X
$$

where X represents the whole input signal ($x[n]$ for all n) and Y represents the whole output signal ($y[n]$ for all n)

Representing the difference machine

with \mathcal{R} leads to the equivalent representation

$$
Y=X-\mathcal{R} X=(1-\mathcal{R}) X
$$

Operator Representation of a Cascaded System

System operations have simple operator representations.

Cascade systems \rightarrow multiply operator expressions.

Using operator notation:

$$
\begin{aligned}
& Y_{1}=(1-\mathcal{R}) X \\
& Y_{2}=(1-\mathcal{R}) Y_{1}
\end{aligned}
$$

Substituting for Y_{1} :

$$
Y_{2}=(1-\mathcal{R})(1-\mathcal{R}) X
$$

Operator Approach

Applies your existing expertise with polynomials to understand block diagrams, and thereby understand systems.

Operator Notation: Check Yourself

Let $Y=\mathcal{R} X$. Which of the following is/are true:

1. $y[n]=x[n]$ for all n
2. $y[n+1]=x[n]$ for all n
3. $y[n]=x[n+1]$ for all n
4. $y[n-1]=x[n]$ for all n
5. none of the above

Operator Algebra

Operator expressions expand and reduce like polynomials.

Using difference equations:

$$
\begin{aligned}
y_{2}[n] & =y_{1}[n]-y_{1}[n-1] \\
& =(x[n]-x[n-1])-(x[n-1]-x[n-2]) \\
& =x[n]-2 x[n-1]+x[n-2]
\end{aligned}
$$

Using operator notation:

$$
\begin{aligned}
Y_{2} & =(1-\mathcal{R}) Y_{1}=(1-\mathcal{R})(1-\mathcal{R}) X \\
& =(1-\mathcal{R})^{2} X \\
& =\left(1-2 \mathcal{R}+\mathcal{R}^{2}\right) X
\end{aligned}
$$

Operator Algebra

Operator notation facilitates seeing relations among systems.
"Equivalent" block diagrams (assuming both initially at rest):

Equivalent operator expression:
$(1-\mathcal{R})(1-\mathcal{R})=1-2 \mathcal{R}+\mathcal{R}^{2}$

Operator Algebra

Operator notation prescribes operations on signals, not samples: e.g., start with X, subtract 2 times a right-shifted version of X, and add a double-right-shifted version of X !
X :

$-2 \mathcal{R} X$:

$+\mathcal{R}^{2} X:$

$y=X-2 \mathcal{R} X+\mathcal{R}^{2} X:$

Operator Algebra

Multiplication distributes over addition.

Equivalent systems

Equivalent operator expression:

$$
\mathcal{R}(1-\mathcal{R})=\mathcal{R}-\mathcal{R}^{2}
$$

Check Yourself

How many of the following systems are equivalent?

Operator Algebra

Expressions involving \mathcal{R} obey many familiar laws of algebra, e.g. commutativity.

$$
\mathcal{R}(1-\mathcal{R}) X=(1-\mathcal{R}) \mathcal{R} X
$$

This is easily proved by the definition of \mathcal{R}, and it implies that cascaded systems commute (assuming initial rest)

is equivalent to

Operator Algebra

The associative property similarly holds for operator expressions.

Equivalent systems

Equivalent operator expression:

$$
((1-\mathcal{R}) \mathcal{R})(2-\mathcal{R})=(1-\mathcal{R})(\mathcal{R}(2-\mathcal{R}))
$$

Explicit and Implicit Rules

Recipes versus constraints.

Recipe: output signal equals difference between input signal and right-shifted input signal.

Constraints: find the signal Y such that the difference between Y and $\mathcal{R} Y$ is X. But how?

Example: Accumulator

Try step-by-step analysis: it always works. Start "at rest."

Find $y[n]$ given $x[n]=\delta[n]: \quad y[n]=x[n]+y[n-1]$
$y[0]=x[0]+y[-1]=1+0=1$
$y[1]=x[1]+y[0] \quad=0+1=1$
$y[2]=x[2]+y[1] \quad=0+1=1$

Persistent response to a transient input!

Example: Accumulator

These systems are equivalent in the sense that if each is initially at rest, they will produce identical outputs from the same input.

$$
(1-\mathcal{R}) Y_{1}=X_{1} \quad \Leftrightarrow ? \quad Y_{2}=\left(1+\mathcal{R}+\mathcal{R}^{2}+\mathcal{R}^{3}+\cdots\right) X_{2}
$$

Proof: Assume $X_{2}=X_{1}$:

$$
\begin{aligned}
Y_{2} & =\left(1+\mathcal{R}+\mathcal{R}^{2}+\mathcal{R}^{3}+\cdots\right) X_{2} \\
& =\left(1+\mathcal{R}+\mathcal{R}^{2}+\mathcal{R}^{3}+\cdots\right) X_{1} \\
& =\left(1+\mathcal{R}+\mathcal{R}^{2}+\mathcal{R}^{3}+\cdots\right)(1-\mathcal{R}) Y_{1} \\
& =\left(\left(1+\mathcal{R}+\mathcal{R}^{2}+\mathcal{R}^{3}+\cdots\right)-\left(\mathcal{R}+\mathcal{R}^{2}+\mathcal{R}^{3}+\cdots\right)\right) Y_{1} \\
& =Y_{1}
\end{aligned}
$$

It follows that $Y_{2}=Y_{1}$.

Example: Accumulator

The reciprocal of $1-\mathcal{R}$ can also be evaluated using synthetic division.

$$
\begin{aligned}
& 1-\mathcal{R} \xlongequal[1]{1+\mathcal{R}+\mathcal{R}^{2}+\mathcal{R}^{3}+\cdots} \\
& \frac{1-\mathcal{R}}{\mathcal{R}} \\
& \frac{\mathcal{R}-\mathcal{R}^{2}}{\mathcal{R}^{2}} \\
& \frac{\mathcal{R}^{2}-\mathcal{R}^{3}}{\mathcal{R}^{3}} \\
& \underline{\mathcal{R}^{3}-\mathcal{R}^{4}}
\end{aligned}
$$

Example: Accumulator

The response of the accumulator system could also be generated by a system with infinitely many paths from input to output, each with one unit of delay more than the previous.

$Y=\left(1+\mathcal{R}+\mathcal{R}^{2}+\mathcal{R}^{3}+\cdots\right) X$

Example: Accumulator

The system functional for the accumulator is the reciprocal of a polynomial in \mathcal{R}.

$$
(1-\mathcal{R}) Y=X
$$

The product $(1-\mathcal{R}) \times\left(1+\mathcal{R}+\mathcal{R}^{2}+\mathcal{R}^{3}+\cdots\right)$ equals 1 .
Therefore the terms $(1-\mathcal{R})$ and $\left(1+\mathcal{R}+\mathcal{R}^{2}+\mathcal{R}^{3}+\cdots\right)$ are reciprocals.
Thus we can write

$$
\frac{Y}{X}=\frac{1}{1-\mathcal{R}}=1+\mathcal{R}+\mathcal{R}^{2}+\mathcal{R}^{3}+\mathcal{R}^{4}+\cdots
$$

Check Yourself

A system is described by the following operator expression: $\frac{Y}{X}=\frac{1}{1+2 \mathcal{R}}$.

Determine the output of the system when the input is a unit sample.

Therefore

$$
\frac{1}{1-\mathcal{R}}=1+\mathcal{R}+\mathcal{R}^{2}+\mathcal{R}^{3}+\mathcal{R}^{4}+\cdots
$$

Linear Difference Equations with Constant Coefficients

Any system composed of adders, gains, and delays can be represented by a difference equation.

$$
\begin{aligned}
y[n] & +a_{1} y[n-1]+a_{2} y[n-2]+a_{3} y[n-3]+\cdots \\
& =b_{0} x[n]+b_{1} x[n-1]+b_{2} x[n-2]+b_{3} x[n-3]+\cdots
\end{aligned}
$$

Such a system can also be represented by an operator expression.

$$
\left(1+a_{1} \mathcal{R}+a_{2} \mathcal{R}^{2}+a_{3} \mathcal{R}^{3}+\cdots\right) Y=\left(b_{0}+b_{1} \mathcal{R}+b_{2} \mathcal{R}^{2}+b_{3} \mathcal{R}^{3}+\cdots\right) X
$$

We will see that this correspondence provides insight into behavior. This correspondence also reduces algebraic tedium.

Check Yourself

Determine the difference equation that relates $x[\cdot]$ and $y[\cdot]$.

1. $y[n]=x[n-1]+y[n-1]$
2. $y[n]=x[n-1]+y[n-2]$
3. $y[n]=x[n-1]+y[n-1]+y[n-2]$
4. $y[n]=x[n-1]+y[n-1]-y[n-2]$
5. none of the above

Signals and Systems

Multiple representations of discrete-time systems.

Difference equations: mathematically compact.

$$
y[n]=x[n]-x[n-1]
$$

Block diagrams: illustrate signal flow paths.

Operator representations: analyze systems as polynomials.

$$
Y=(1-\mathcal{R}) X
$$

Labs: representing signals in python controlling robots and analyzing their behaviors.

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

