

Signals and Systems: Widely Applicable

Lecture 3

Inputs and outputs of systems can be functions of continuous time

We will focus on discrete-time systems.

Difference Equations

Difference equations are an excellent way to represent discrete-time systems.

Example:

$$y[n] = x[n] - x[n-1]$$

Difference equations can be applied to any discrete-time system; they are mathematically precise and compact.

Difference Equations

Difference equations are mathematically precise and compact.

Example:

$$y[n] = x[n] - x[n-1]$$

Let x[n] equal the "unit sample" signal $\delta[n]$,

$$\delta[n] = \begin{cases} 1, & \text{if } n = 0; \\ 0, & \text{otherwise.} \end{cases}$$

$$x[n] = \delta[n]$$

We will use the unit sample as a "primitive" (building-block signal) to construct more complex signals.

n

Lecture 3

block diagrams illustrate signal flow paths

From Samples to Signals

Lumping all of the (possibly infinite) samples into a **single object** – **the signal** – simplifies its manipulation.

This lumping is analogous to

- representing coordinates in three-space as points
- representing lists of numbers as vectors in linear algebra
- creating an object in Python

Lecture 3

Operator Notation

Symbols can now compactly represent diagrams.

Let \mathcal{R} represent the **right-shift operator**:

 $Y = \mathcal{R}\{X\} \equiv \mathcal{R}X$

where X represents the whole input signal $(x[n] \mbox{ for all } n)$ and Y represents the whole output signal $(y[n] \mbox{ for all } n)$

Representing the difference machine

with $\ensuremath{\mathcal{R}}$ leads to the equivalent representation

$$Y = X - \mathcal{R}X = (1 - \mathcal{R})X$$

Let $Y = \mathcal{R}X$. Which of the following is/are true: 1. y[n] = x[n] for all n2. y[n+1] = x[n] for all n3. y[n] = x[n+1] for all n4. y[n-1] = x[n] for all n5. none of the above

Operator Notation: Check Yourself

Operator Approach

Applies your existing expertise with polynomials to understand block diagrams, and thereby understand systems.

Operator Algebra

Operator notation facilitates seeing relations among systems. "Equivalent" block diagrams (assuming both initially at rest):

Lecture 3

Operator Algebra

Operator notation prescribes operations on signals, not samples: e.g., start with X, subtract 2 times a right-shifted version of X, and add a double-right-shifted version of X!

X : $-2\mathcal{R}X$:

 $+\mathcal{R}^2X$:

 $y = X - 2\mathcal{R}X + \mathcal{R}^2X:$ -10

Operator Algebra

Operator Algebra

Expressions involving $\mathcal R$ obey many familiar laws of algebra, e.g., commutativity.

$$\mathcal{R}(1-\mathcal{R})X = (1-\mathcal{R})\mathcal{R}X$$

This is easily proved by the definition of \mathcal{R} , and it implies that cascaded systems commute (assuming initial rest)

Operator Algebra

Multiplication distributes over addition.

Equivalent systems

 $\mathcal{R}(1-\mathcal{R}) = \mathcal{R} - \mathcal{R}^2$

The associative property similarly holds for operator expressions.

Constraints: find the signal \boldsymbol{Y} such that the difference between \boldsymbol{Y} and $\mathcal{R}Y$ is X. But how?

Lecture 3

Example: Accumulator

The response of the accumulator system could also be generated by a system with infinitely many paths from input to output, each with one unit of delay more than the previous.

Example: Accumulator

These systems are equivalent in the sense that if each is initially at rest, they will produce identical outputs from the same input.

$$(1 - \mathcal{R}) Y_1 = X_1 \quad \Leftrightarrow ? \quad Y_2 = (1 + \mathcal{R} + \mathcal{R}^2 + \mathcal{R}^3 + \cdots) X_2$$

Proof: Assume $X_2 = X_1$:

$$\begin{split} Y_2 &= (1 + \mathcal{R} + \mathcal{R}^2 + \mathcal{R}^3 + \cdots) X_2 \\ &= (1 + \mathcal{R} + \mathcal{R}^2 + \mathcal{R}^3 + \cdots) X_1 \\ &= (1 + \mathcal{R} + \mathcal{R}^2 + \mathcal{R}^3 + \cdots) (1 - \mathcal{R}) Y_1 \\ &= ((1 + \mathcal{R} + \mathcal{R}^2 + \mathcal{R}^3 + \cdots) - (\mathcal{R} + \mathcal{R}^2 + \mathcal{R}^3 + \cdots)) Y_1 \\ &= Y_1 \end{split}$$

It follows that $Y_2 = Y_1$.

The system functional for the accumulator is the reciprocal of a polynomial in \mathcal{R} .

 $(1 - \mathcal{R})Y = X$

The product $(1 - \mathcal{R}) \times (1 + \mathcal{R} + \mathcal{R}^2 + \mathcal{R}^3 + \cdots)$ equals 1. Therefore the terms $(1 - \mathcal{R})$ and $(1 + \mathcal{R} + \mathcal{R}^2 + \mathcal{R}^3 + \cdots)$ are reciprocals.

Thus we can write

$$\frac{Y}{X} = \frac{1}{1-\mathcal{R}} = 1 + \mathcal{R} + \mathcal{R}^2 + \mathcal{R}^3 + \mathcal{R}^4 + \cdots$$

Example: Accumulator

The reciprocal of $1-\mathcal{R}$ can also be evaluated using synthetic division.

Therefore

$$\frac{1}{1-\mathcal{R}} = 1 + \mathcal{R} + \mathcal{R}^2 + \mathcal{R}^3 + \mathcal{R}^4 + \cdots$$

Check Yourself

A system is described by the following operator expression:

$$\frac{Y}{X} = \frac{1}{1+2\mathcal{R}}$$

Determine the output of the system when the input is a unit sample.

Lecture 3

Check Yourself

MIT OpenCourseWare http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.