6.01: Introduction to EECS I

Circuits

The Circuit Abstraction

We can represent the flashlight as a voltage source (battery) connected to a resistor (light bulb).

The voltage source generates a voltage v across the resistor and a current i through the resistor.

The Circuit Abstraction

Circuits are important for two very different reasons:

- as physical systems
- power (from generators and transformers to power lines)
- electronics (from cell phones to computers)
- as models of complex systems
- neurons
- brain
- cardiovascular system
- hearing

The Circuit Abstraction

Circuits represent systems as connections of elements

- through which currents (through variables) flow and
- across which voltages (across variables) develop.

The Circuit Abstraction

We can represent the flow of water by a circuit.

Flow of water into and out of tank are represented as "through" variables r_{i} and r_{o}, respectively. Hydraulic pressure at bottom of tank is represented by the "across" variable $P=\rho g h$.

The Circuit Abstraction

Circuits are basis of enormously successful semiconductor industry.

What design principles enable development of such complex systems?

The Circuit Abstraction

Circuits as models of complex systems: myelinated neuron

\&RP P RQV(IFHQM-II RUP RUHIQRUP DMRQTMHHKKB

The Circuit Abstraction

Circuits represent systems as connections of elements

- through which currents (through variables) flow and
- across which voltages (across variables) develop.

The primitives are the elements:

- sources,
- capacitors, and
- resistors.

The rules of combination are the rules that govern

- flow of current (through variable) and
- development of voltage (across variable).

Analyzing Simple Circuits

Analyzing simple circuits is straightforward.
Example 1:

The voltage source determines the voltage across the resistor, $v=$ 1 V , so the current through the resistor is $i=v / R=1 / 1=1 \mathrm{~A}$.

Example 2:

The current source determines the current through the resistor, $i=$ 1 A , so the voltage across the resistor is $v=i R=1 \times 1=1 \mathrm{~V}$.

Analyzing More Complex Circuits

More complex circuits can be analyzed by systematically applying Kirchhoff's voltage law (KVL) and Kirchhoff's current law (KCL).

Analyzing Circuits: KVL

KVL: The sum of the voltages around any closed path is zero.

Check Yourself

How many KVL equations can be written for this circuit?

1. 3
2. 4
3. 5
4. 6
5. 7

Analyzing Circuits: KVL

All possible KVL equations for planar circuits can be generated by combinations of the "inner" loops.

A: $-v_{1}+v_{2}+v_{4}=0$
B: $-v_{2}+v_{3}-v_{6}=0$
$\mathrm{A}+\mathrm{B}:-v_{1}+v_{2}+v_{4}-v_{2}+v_{3}-v_{6}=-v_{1}+v_{3}-v_{6}+v_{4}=0$

Analyzing Circuits: KVL

KVL: The sum of the voltages around any closed path is zero.

Example: $-v_{1}+v_{2}+v_{4}=0$ or equivalently $v_{1}=v_{2}+v_{4}$.

How many other KVL relations are there?

Analyzing Circuits: KVL

Planar circuits can be characterized by their "inner" loops. KVL equations for the inner loops are independent.

A: $-v_{1}+v_{2}+v_{4}=0$
B : $-v_{2}+v_{3}-v_{6}=0$
C: $-v_{4}+v_{6}+v_{5}=0$

KVL: Summary

The sum of the voltages around any closed path is zero.
One KVL equation can be written for every closed path in a circuit. Sets of KVL equations are not necessarily linearly independent.

KCL equations for the "inner" loops of planar circuits are linearly independent.

6.01: Introduction to EECS I

Kirchhoff's Current Law

The flow of electrical current is analogous to the flow of incompressible fluid (e.g., water).

Current i_{1} flows into a node and two currents i_{2} and i_{3} flow out:

$$
i_{1}=i_{2}+i_{3}
$$

Kirchhoff's Current Law

Electrical currents cannot accumulate in elements, so current that flows into a circuit element must also flow out.

$i_{1}=i_{4}$
$i_{2}=i_{5}$
$i_{3}=i_{6}$

Since $i_{1}+i_{2}+i_{3}=0$ it follows that
$i_{4}+i_{5}+i_{6}=0$.

Check Yourself

How many distinct KCL relations can be written for this circuit?

1. 3
2. 4
3. 5
4. 6
5. 7

Kirchhoff's Current Law

The net flow of electrical current into (or out of) a node is zero.

Here, there are two nodes, each indicated by a dot.

The net current out of the top node must be zero:

$$
i_{1}+i_{2}+i_{3}=0
$$

Check Yourself

How many linearly independent KCL equations can be written for the following circuit?

1. 1
2. 2
3. 3
4. 4
5. 5

Analyzing Circuits: KCL

The net current out of any closed surface (which can contain multiple nodes) is zero.

node 1: $\quad i_{1}+i_{2}+i_{3}=0$
node 2: $\quad-i_{2}+i_{4}+i_{6}=0$
nodes $1+2$: $i_{1}+i_{2}+i_{3}-i_{2}+i_{4}+i_{6}=i_{1}+i_{3}+i_{4}+i_{6}=0$

Analyzing Circuits: KCL

The net current out of any closed surface (which can contain multiple nodes) is zero.

nodes $1+2$: $i_{1}+i_{3}+i_{4}+i_{6}=0$
node 3: $\quad-i_{3}-i_{6}+i_{5}=0$
nodes $1+2+3$: $i_{1}+i_{3}+i_{4}+i_{6}-i_{3}-i_{6}+i_{5}=i_{1}+i_{4}+i_{5}=0$
Net current out of nodes $1+2+3=$ net current into bottom node!

KVL, KCL, and Constitutive Equations

Circuits can be analyzed by combining

- all linearly independent KVL equations,
- all linearly independent KCL equations, and
- one constitutive equation for each element.

Node Voltages

The "node" method is one (of many) ways to systematically reduce the number of circuit equations and unknowns.

- label all nodes except one: ground (gnd) $\equiv 0$ volts
- write KCL for each node whose voltage is not known

KCL at e_{1} :
$\frac{e_{1}-V_{0}}{R_{2}}+\frac{e_{1}-e_{2}}{R_{6}}+\frac{e_{1}}{R_{4}}=0$
KCL at e_{2} :
$\frac{e_{2}-V_{0}}{R_{3}}+\frac{e_{2}-e_{1}}{R_{6}}+\frac{e_{2}}{R_{5}}=0$

- solve (here just 2 equations and 2 unknowns)

KCL: Summary

The sum of the currents out of any node is zero.
One KCL equation can be written for every closed surface (which contain one or more nodes) in a circuit.
Sets of KCL equations are not necessarily linearly independent.
KCL equations for every primitive node except one (ground) are linearly independent.

KVL, KCL, and Constitutive Equations

Unfortunately, there are a lot of equations and unknowns.

12 unknowns: $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, i_{1}, i_{2}, i_{3}, i_{4}, i_{5}$ and i_{6}.
12 equations: $3 \mathrm{KVL}+3 \mathrm{KCL}+5$ for resistors +1 for V source

This circuit is characterized by 12 equations in 12 unknowns!

Loop Currents

The "loop current" method is another way to systematically reduce the number of circuit equations and unknowns.

- label all the loop currents
- write KVL for each loop

loop a :
$-V_{0}+R_{2}\left(i_{a}-i_{b}\right)+R_{4}\left(i_{a}-i_{c}\right)=0$
loop b :
$R_{2}\left(i_{b}-i_{a}\right)+R_{3}\left(i_{b}\right)+R_{6}\left(i_{b}-i_{c}\right)=0$
Ioop c :
$R_{4}\left(i_{c}-i_{a}\right)++R_{6}\left(i_{c}-i_{b}\right)+R_{5}\left(i_{c}\right)=0$
- solve (here just 3 equations and 3 unknowns)

Analyzing Circuits: Summary

We have seen three (of many) methods for analyzing circuits.
Each one is based on a different set of variables:

- currents and voltages for each element
- node voltages
- loop currents

Each requires the use of all constitutive equations.
Each provides a systematic way of identifying the required set of KVL and/or KCL equations.

Common Patterns

Circuits can be simplified when two or more elements behave as a single element.

A "one-port" is a circuit that can be represented as a single element.

A one-port has two terminals. Current enters one terminal (+) and exits the other (-), producing a voltage (v) across the terminals.

Parallel Combinations

The parallel combination of two resistors is equivalent to a single resistor whose conductance ($1 /$ resistance) is the sum of the two original conductances.

$$
i=\frac{v}{R_{1}}+\frac{v}{R_{2}}
$$

$$
i=\frac{v}{R_{p}}
$$

$$
\frac{1}{R_{p}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}=\frac{R_{1}+R_{2}}{R_{1} R_{2}} \quad \rightarrow \quad R_{p}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}} \equiv R_{1} \| R_{2}
$$

The resistance of a parallel combination is always smaller than either of the original resistances.

Check Yourself

Determine the current I in the circuit below.

1. 1 A
2. $\frac{5}{3} \mathrm{~A}$
3. -1 A
4. -5 A
5. none of the above

Series Combinations

The series combination of two resistors is equivalent to a single resistor whose resistance is the sum of the two original resistances.

$$
\begin{aligned}
& v=R_{1} i+R_{2} i \\
& \\
& \qquad R_{s}=R_{1}+R_{2}
\end{aligned}
$$

$$
v=R_{s} i
$$

The resistance of a series combination is always larger than either of the original resistances.

Check Yourself

What is the equivalent resistance of the following one-port.

1. 0.5
2. 1
3. 2
4. 3
5. 5

Voltage Divider

Resistors in series act as voltage dividers.

$I=\frac{V}{R_{1}+R_{2}}$
$V_{1}=R_{1} I=\frac{R_{1}}{R_{1}+R_{2}} V$
$V_{2}=R_{2} I=\frac{R_{2}}{R_{1}+R_{2}} V$

Check Yourself

Which of the following is true?

1. $V_{o} \leq 3 \vee$
2. $3 \mathrm{~V}<V_{o} \leq 6 \mathrm{~V}$
3. $6 \mathrm{~V}<V_{o} \leq 9 \mathrm{~V}$
4. $9 \mathrm{~V}<V_{o} \leq 12 \mathrm{~V}$
5. $V_{o}>12 \mathrm{~V}$

Current Divider

Resistors in parallel act as current dividers.

$$
\begin{aligned}
& V=\left(R_{1} \| R_{2}\right) I \\
& I_{1}=\frac{V}{R_{1}}=\frac{R_{1} \| R_{2}}{R_{1}} I=\frac{1}{R_{1}} \frac{R_{1} R_{2}}{R_{1}+R_{2}} I=\frac{R_{2}}{R_{1}+R_{2}} I \\
& I_{2}=\frac{V}{R_{2}}=\frac{R_{1} \| R_{2}}{R_{2}} I=\frac{1}{R_{2}} \frac{R_{1} R_{2}}{R_{1}+R_{2}} I=\frac{R_{1}}{R_{1}+R_{2}} I
\end{aligned}
$$

Summary

Circuits represent systems as connections of elements

- through which currents (through variables) flow and
- across which voltages (across variables) develop.

We have seen three (of many) methods for analyzing circuits.
Each one is based on a different set of variables:

- currents and voltages for each element
- node voltages
- loop currents

We can simplify analysis by recognizing common patterns:

- series and parallel combinations
- voltage and current dividers

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

