
6.01: Introduction to EECS I

Search Algorithms

April 26, 2011

Nano-Quiz Makeups

Wednesday, May 4, 6-11pm, 34-501.

– everyone can makeup/retake NQ 1

– everyone can makeup/retake two additional NQs

– you can makeup/retake other NQs excused by Sˆ3

If you makeup/retake a NQ, the new score will replace the old

score, even if the new score is lower!

Module 4: Probability and Planning

Modeling uncertainty and making robust plans.

Topics: Bayes’ theorem, search strategies

Lab exercises:

• Mapping: drive robot around unknown space and make map.

• Localization: give robot map and ask it to find where it is.

• Planning: plot a route to a goal in a maze

Themes: Robust design in the face of uncertainty

Modeling

Last Time: Probability

uncertainty and making robust plans.

Topics: Bayes’ theorem, search strategies

Lab exercises:

• Mapping: drive robot around unknown space and make map.

• Localization: give robot map and ask it to find where it is.

• Planning: plot a route to a goal in a maze

Themes: Robust design in the face of uncertainty

Design Lab 12: One-Dimensional Localizer

As robot drives along hallway with obstacles to its side, estimate its

current position based on previous estimates and sonar information.

State St: discretized values of distance along the hallway (x).

Transition model Pr(St+1 = s′ | St = s): conditional distribution of

next state given current state.

Observation model Pr(Ot = d | St = s): conditional distribution of

left-facing sonar readings (y) given state.

Modeling

Today: Search Strategies

uncertainty and making robust plans.

Topics: Bayes’ theorem, search strategies

Lab exercises:

• Mapping: drive robot around unknown space and make map.

• Localization: give robot map and ask it to find where it is.

• Planning: plot a route to a goal in a maze

We will plan a route by searching through possible alternatives.

Planning

Make a plan by searching.

Example: Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.

1 2 3

4 5 6

7 8

Start

1 2

3 4 5

6 7 8

Goal

Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.

1 2 3

4 5 6

7 8

Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.

1 2 3

4 5

7 8 6

Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.

1 2 3

4 5

7 8 6

Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.

1 2 3

4 5

7 8 6

Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.

1 2 3

7 4 5

8 6

Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.

1 2 3

7 4 5

8 6

Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.

1 2 3

7 4 5

8 6

Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.

1 2 3

7 4

8 6 5

Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.

1 2

7 4 3

8 6 5

Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.

1 2

7 4 3

8 6 5

Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.

1 4 2

7 3

8 6 5

Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.

1 4 2

7 6 3

8 5

Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.

1 4 2

7 6 3

8 5

Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.

1 4 2

6 3

7 8 5

Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.

1 4 2

6 3

7 8 5

Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.

1 4 2

6 3

7 8 5

Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.

1 4 2

6 3 5

7 8

Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.

1 4 2

6 3 5

7 8

Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.

1 4 2

6 3 5

7 8

Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.

1 4 2

3 5

6 7 8

Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.

1 4 2

3 5

6 7 8

Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.

1 2

3 4 5

6 7 8

Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.

1 2

3 4 5

6 7 8

Eight Puzzle

Rearrange board by sequentially sliding tiles into the free spot.

Twenty-two moves.

How difficult is this problem?

1 2

3 4 5

6 7 8

Check Yourself

How many different board configurations (states) exist?

1 2 3

4 5 6

7 8

1 2

3 4 5

6 7 8

1. 82 = 64 2. 92 = 81
3. 8 ! = 40320 4. 9 ! = 362880

5. none of the above

Check Yourself

How many different board configurations (states) exist?

Nine possibilities for the first square.

Eight possibilities for the second square.

Seven possiblities for the third square.

...

1 2 3

4 5 6

7 8

1 2

3 4 5

6 7 8

9× 8× 7 × 6× 5× 4× 3× 2× 1 = 9 !

Check Yourself

How many different board configurations (states) exist? 4

1 2 3

4 5 6

7 8

1 2

3 4 5

6 7 8

1. 82 = 64 2. 92 = 81
3. 8 ! = 40320 4. 9 ! = 362880

5. none of the above

Eight Puzzle

We have to search through as many as 9 ! = 362, 880 configurations

(more if we get confused and loose track of what we are doing)!

Is the solution with 22 moves optimal? Do shorter solutions exist?

Do we have to look at all 362,880 configurations to be sure?

1 2 3

4 5 6

7 8

1 2

3 4 5

6 7 8

Search Algorithm

Develop an algorithm to systematically conduct a search.

Analyze how well the algorithm performs.

Optimize the algorithm:

– find the “best” solution (i.e., minimum path length)

– by considering as few cases as possible.

Algorithm Overview: Example

Find minimum distance path between 2 points on a rectangular grid.

A B C

D E F

G H I

Algorithm Overview

Find minimum distance path between 2 points on a rectangular grid.

A B C

D E F

G H I

Represent all possible paths with a tree (shown to just length 3).

0 1 0 1 0 1 2 3 0 1 0 1 2 3 0 1

0 1 2 0 1 2

0 1

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

Find the shortest path from A to I.

Algorithm Overview

The tree could be infinite.

Therefore, we will construct the tree and search at the same time.

0 1 0 1 0 1 2 3 0 1 0 1 2 3 0 1

0 1 2 0 1 2

0 1

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

Python Representation

Represent possible locations by states: ’A’,’B’,’C’,’D’,...’I’

Represent possible transitions with successor procedure

A B C

D E F

G H I

• inputs: current state (location) and action (e.g., up, right, ...)

• output: new state

Define initialState (starting location)

Determine if goal has been achieved with goalTest procedure

• input: state

• output: True if state achieves goal, False otherwise.

Python Representation

A B C

D E F

G H I

successors = { ’A’: [’B’,’D’], ’B’: [’A’,’C’,’E’],
’C’: [’B’,’F’], ’D’: [’A’,’E’,’G’],
’E’: [’B’,’D’,’F’,’H’], ’F’: [’C’,’E’,’I’],
’G’: [’D’,’H’], ’H’: [’E’,’G’,’I’],
’I’: [’F’,’H’] }

actions = [0, 1, 2, 3]

def successor(s,a):
if a<len(successors[s]): return successors[s][a]
else: return s

initialState = ’A’

def goalTest(s):
return s==’I’

Represent

Search Trees in Python

each node in the tree as an instance of class SearchNode.

0 1 2 0 1 2

0 1

A C

B

E A E

D

A

G

class SearchNode:
def init (self, action, state, parent):

self.action = action
self.state = state
self.parent = parent

def path(self):
if self.parent == None:

return [(self.action, self.state)]
else:

return self.parent.path()+
[(self.action,self.state)]

Search Algorithm

Construct the tree and find the shortest path to the goal.

0 1 2 0 1 2

0 1

A C

B

E A E

D

A

G

Algorithm:

•	 initialize agenda (list of nodes being considered)

to contain starting node

•	 repeat the following steps:

–	 remove one node from the agenda

– add that node’s children to the agenda

until goal is found or agenda is empty

•	 return resulting path

Search Algorithm in Python

Define the search procedure.

def search(initialState, goalTest, actions, successor):

Search Algorithm in Python

Initialize the agenda.

def search(initialState, goalTest, actions, successor):

if goalTest(initialState):

return [(None, initialState)]

agenda = [SearchNode(None, initialState, None)]

Search Algorithm in Python

Repeatedly (1) remove node (parent) from agenda and (2) add

parent’s children until goal is reached or agenda is empty.

def search(initialState, goalTest, actions, successor):

if goalTest(initialState):

return [(None, initialState)]

agenda = [SearchNode(None, initialState, None)]

while not empty(agenda):

parent = getElement(agenda)

for	 a in actions:

newS = successor(parent.state, a)

newN = SearchNode(a, newS, parent)

if goalTest(newS):

return newN.path()

else:

add(newN, agenda)

return None

Order Matters

Replace first node in agenda by its children:

0 1 0 1 0 1 2 3 0 1 0 1 2 3 0 1

0 1 2 0 1 2

0 1

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

step Agenda

0: A

1: AB AD

2: ABA ABC ABE AD

3: ABAB ABAD ABC ABE AD

Replace

Order Matters

first node in agenda by its children:

0 1 0 1 0 1 2 3 0 1 0 1 2 3 0 1

0 1 2 0 1 2

0 1

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

step Agenda

0: A

1: AB AD

2: ABA ABC ABE AD

3: ABAB ABAD ABC ABE AD

Order Matters

Replace first node in agenda by its children:

0 1 0 1 0 1 2 3 0 1 0 1 2 3 0 1

0 1 2 0 1 2

0 1

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

step Agenda

0: A

1: AB AD

2: ABA ABC ABE AD

3: ABAB ABAD ABC ABE AD

Order Matters

Replace first node in agenda by its children:

0 1 0 1 0 1 2 3 0 1 0 1 2 3 0 1

0 1 2 0 1 2

0 1

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

step Agenda

0: A

1: AB AD

2: ABA ABC ABE AD

3: ABAB ABAD ABC ABE AD

Replace

Order Matters

first node in agenda by its children:

0 1 0 1 0 1 2 3 0 1 0 1 2 3 0 1

0 1 2 0 1 2

0 1

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

step Agenda

0: A

1: AB AD

2: ABA ABC ABE AD

3: ABAB ABAD ABC ABE AD

Replace

Order Matters

first node in agenda by its children:

0 1 0 1 0 1 2 3 0 1 0 1 2 3 0 1

0 1 2 0 1 2

0 1

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

step Agenda

0: A

1: AB AD

2: ABA ABC ABE AD

3: ABAB ABAD ABC ABE AD

Depth First Search

Replace

Order Matters

last node in agenda by its children:

0 1 0 1 0 1 2 3 0 1 0 1 2 3 0 1

0 1 2 0 1 2

0 1

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

step Agenda

0: A

1: AB AD

2: AB ADA ADE ADG

3: AB ADA ADE ADGD ADGH

Replace

Order Matters

last node in agenda by its children:

0 1 0 1 0 1 2 3 0 1 0 1 2 3 0 1

0 1 2 0 1 2

0 1

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

step Agenda

0: A

1: AB AD

2: AB ADA ADE ADG

3: AB ADA ADE ADGD ADGH

Order Matters

Replace last node in agenda by its children:

0 1 0 1 0 1 2 3 0 1 0 1 2 3 0 1

0 1 2 0 1 2

0 1

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

step Agenda

0: A

1: AB AD

2: AB ADA ADE ADG

3: AB ADA ADE ADGD ADGH

Order Matters

Replace last node in agenda by its children:

0 1 0 1 0 1 2 3 0 1 0 1 2 3 0 1

0 1 2 0 1 2

0 1

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

step Agenda

0: A

1: AB AD

2: AB ADA ADE ADG

3: AB ADA ADE ADGD ADGH

Replace

Order Matters

last node in agenda by its children:

0 1 0 1 0 1 2 3 0 1 0 1 2 3 0 1

0 1 2 0 1 2

0 1

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

step Agenda

0: A

1: AB AD

2: AB ADA ADE ADG

3: AB ADA ADE ADGD ADGH

Order Matters

Replace last node in agenda by its children:

0 1 0 1 0 1 2 3 0 1 0 1 2 3 0 1

0 1 2 0 1 2

0 1

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

step Agenda

0: A

1: AB AD

2: AB ADA ADE ADG

3: AB ADA ADE ADGD ADGH

also Depth First Search

Order Matters

Remove first node from agenda. Add its children to end of agenda.

step Agenda

0 1 0 1 0 1 2 3 0 1 0 1 2 3 0 1

0 1 2 0 1 2

0 1

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

0: A

1: AB AD

2: AD ABA ABC ABE

3: ABA ABC ABE ADA ADE ADG

Order Matters

Remove first node from agenda. Add its children to end of agenda.

step Agenda

0 1 0 1 0 1 2 3 0 1 0 1 2 3 0 1

0 1 2 0 1 2

0 1

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

0: A

1: AB AD

2: AD ABA ABC ABE

3: ABA ABC ABE ADA ADE ADG

Order Matters

Remove first node from agenda. Add its children to end of agenda.

step Agenda

0 1 0 1 0 1 2 3 0 1 0 1 2 3 0 1

0 1 2 0 1 2

0 1

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

0: A

1: AB AD

2: AD ABA ABC ABE

3: ABA ABC ABE ADA ADE ADG

Order Matters

Remove first node from agenda. Add its children to end of agenda.

step Agenda

0 1 0 1 0 1 2 3 0 1 0 1 2 3 0 1

0 1 2 0 1 2

0 1

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

0: A

1: AB AD

2: AD ABA ABC ABE

3: ABA ABC ABE ADA ADE ADG

Remove first node from agenda. Add its children to end of agenda.

Order Matters

step Agenda

0 1 0 1 0 1 2 3 0 1 0 1 2 3 0 1

0 1 2 0 1 2

0 1

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

0: A

1: AB AD

2: AD ABA ABC ABE

3: ABA ABC ABE ADA ADE ADG

Order Matters

Remove first node from agenda. Add its children to end of agenda.

step Agenda

0 1 0 1 0 1 2 3 0 1 0 1 2 3 0 1

0 1 2 0 1 2

0 1

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

1: AB AD

2: AD ABA ABC ABE

3: ABA ABC ABE ADA ADE ADG

4: ABC ABE ADA ADE ADG ABAB ABAD

Order Matters

Remove first node from agenda. Add its children to end of agenda.

step Agenda

0 1 0 1 0 1 2 3 0 1 0 1 2 3 0 1

0 1 2 0 1 2

0 1

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

2: AD ABA ABC ABE

3: ABA ABC ABE ADA ADE ADG

4: ABC ABE ADA ADE ADG ABAB ABAD

5: ABE ADA ADE ADG ABAB ABAD ABCB ABCF

Order Matters

Remove first node from agenda. Add its children to end of agenda.

step	 Agenda

0 1 0 1 0 1 2 3 0 1 0 1 2 3 0 1

0 1 2 0 1 2

0 1

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

3:	 ABA ABC ABE ADA ADE ADG

4:	 ABC ABE ADA ADE ADG ABAB ABAD

5:	 ABE ADA ADE ADG ABAB ABAD ABCB ABCF

6:	 ADA ADE ADG ABAB ABAD ABCB ABCF ABEB ABED

ABEF ABEH

Order Matters

Remove first node from agenda. Add its children to end of agenda.

step	 Agenda

0 1 0 1 0 1 2 3 0 1 0 1 2 3 0 1

0 1 2 0 1 2

0 1

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

5:	 ABE ADA ADE ADG ABAB ABAD ABCB ABCF

6:	 ADA ADE ADG ABAB ABAD ABCB ABCF ABEB ABED

ABEF ABEH

7:	 ADE ADG ABAB ABAD ABCB ABCF ABEB ABED

ABEF ABEH ADAB ADAD

Order Matters

Remove first node from agenda. Add its children to end of agenda.

step	 Agenda

0 1 0 1 0 1 2 3 0 1 0 1 2 3 0 1

0 1 2 0 1 2

0 1

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

7:	 ADE ADG ABAB ABAD ABCB ABCF ABEB ABED

ABEF ABEH ADAB ADAD

8:	 ADG ABAB ABAD ABCB ABCF ABEB ABED

ABEF ABEH ADAB ADAD ADEB ADED ADEF ADEH

Order Matters

Remove first node from agenda. Add its children to end of agenda.

step	 Agenda

0 1 0 1 0 1 2 3 0 1 0 1 2 3 0 1

0 1 2 0 1 2

0 1

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

8:	 ADG ABAB ABAD ABCB ABCF ABEB ABED

ABEF ABEH ADAB ADAD ADEB ADED ADEF ADEH

9:	 ABAB ABAD ABCB ABCF ABEB ABED ABEF ABEH

ADAB ADAD ADEB ADED ADEF ADEH ADGD ADGH

Order Matters

Remove first node from agenda. Add its children to end of agenda.

step	 Agenda

0 1 0 1 0 1 2 3 0 1 0 1 2 3 0 1

0 1 2 0 1 2

0 1

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

8:	 ADG ABAB ABAD ABCB ABCF ABEB ABED

ABEF ABEH ADAB ADAD ADEB ADED ADEF ADEH

9:	 ABAB ABAD ABCB ABCF ABEB ABED ABEF ABEH

ADAB ADAD ADEB ADED ADEF ADEH ADGD ADGH

Breadth First Search

–

Order Matters

Replace last node by its children (depth-first search):

implement with stack (last-in, first-out).

Remove first node from agenda. Add its children to the end of the

agenda (breadth-first search):

– implement with queue (first-in, first-out).

Stack

Last in, first out.

>>> s = Stack()

>>> s.push(1)

>>> s.push(9)

>>> s.push(3)

>>> s.pop()

3

>>> s.pop()

9

>>> s.push(-2)

>>> s.pop()

-2

Stack Class

Last in, first out.

class Stack:

def __init__(self):

self.data = []

def push(self, item):

self.data.append(item)

def pop(self):

return self.data.pop()

def empty(self):

return self.data is []

First in, first out.

Queue

>>> q = Queue()

>>> q.push(1)

>>> q.push(9)

>>> q.push(3)

>>> q.pop()

1

>>> q.pop()

9

>>> q.push(-2)

>>> q.pop()

3

Queue Class

First in, first out.

class Queue:

def __init__(self):

self.data = []

def push(self, item):

self.data.append(item)

def pop(self):

return self.data.pop(0) #NOTE: different argument

def empty(self):

return self.data is []

Depth-First Search

Replace getElement, add, and empty with stack commands.

def search(initialState, goalTest, actions, successor):

agenda = Stack()

if goalTest(initialState):

return [(None, initialState)]

agenda.push(SearchNode(None, initialState, None))

while not agenda.empty():

parent = agenda.pop()

for a in actions:

newS = successor(parent.state, a)

newN = SearchNode(a, newS, parent)

if goalTest(newS):

return newN.path()

else:

agenda.push(newN)

return None

Breadth-First Search

Replace getElement, add, and empty with queue commands.

def search(initialState, goalTest, actions, successor):

agenda = Queue()

if goalTest(initialState):

return [(None, initialState)]

agenda.push(SearchNode(None, initialState, None))

while not agenda.empty():

parent = agenda.pop()

for	 a in actions:

newS = successor(parent.state, a)

newN = SearchNode(a, newS, parent)

if goalTest(newS):

return newN.path()

else:

agenda.push(newN)

return None

Too Much Searching

Find minimum distance path between 2 points on a rectangular grid.

A B C

D E F

G H I

Represent all possible paths with a tree (shown to just length 3).

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

Not all of the nodes of this tree must be searched!

Check Yourself

How many of these terminal nodes can be ignored?

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

1. 0 2. 2 3. 4 4. 6 5. 8

Check Yourself

The red states represent returns to a previously visited state.

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

We only need to consider paths that do not revisit states.

F

C

B

D F H

E

B F H

E

D

A

H

G

Check Yourself

How many of these terminal nodes can be ignored? 5

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

1. 0 2. 2 3. 4 4. 6 5. 8

Pruning

Prune the tree to reduce the amount of work.

Pruning Rule 1:

Don’t consider any path that visits the same state twice.

0 1 0 1 0 1 2 3 0 1 0 1 2 3 0 1

0 1 2 0 1 2

0 1

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

Pruning

Prune the tree to reduce the amount of work.

Pruning Rule 1:

Don’t consider any path that visits the same state twice.

1 1 2 3 0 2 3 1

1 2 1 2

0 1

F

C

B

D F H

E

B F H

E

D

A

H

G

Pruning Rule 1

Implementation (depth first, switch to Queue for breadth first)

def search(initialState, goalTest, actions, successor):
agenda = Stack()
if goalTest(initialState):

return [(None, initialState)]

agenda.push(SearchNode(None, initialState, None))

while not agenda.empty():

parent = agenda.pop()
for	 a in actions:

newS = successor(parent.state, a)

newN = SearchNode(a, newS, parent)

if goalTest(newS):

return newN.path()
elif parent.inPath(newS): # pruning rule 1

pass
else:

agenda.push(newN)

return None

Pruning Rule 1

Add inPath to SearchNode.

class SearchNode:
def __init__(self, action, state, parent):

self.action = action
self.state = state
self.parent = parent

def path(self):
if self.parent == None:

return [(self.action, self.state)]
else:

return self.parent.path() + [(self.action, self.state)]
def inPath(self, state):

if self.state == state:
return True

elif self.parent == None:
return False

else:
return self.parent.inPath(state)

Pruning

Prune the tree to reduce the amount of work.

Pruning Rule 2:

If multiple actions lead to the same state, consider only one of them.

Pruning Rule 2

def search(initialState, goalTest, actions, successor):
agenda = Stack()
if goalTest(initialState):

return [(None, initialState)]
agenda.push(SearchNode(None, initialState, None))
while not agenda.empty():

parent = agenda.pop()
newChildStates = []
for a in actions:

newS = successor(parent.state, a)
newN = SearchNode(a, newS, parent)
if goalTest(newS):

return newN.path()
elif newS in newChildStates: # pruning rule 2

pass
elif parent.inPath(newS): # pruning rule 1

pass
else:

newChildStates.append(newS)
agenda.push(newN)

return None

Depth-First Search Example

A B C

D E F

G H I

Depth-First Search Transcript

agenda: Stack([A]) 1
expanding: A -> AB, AD +2

agenda: Stack([AB, AD])
expanding: AD -> ABE, ADG +2

agenda: Stack([AB, ADE, ADG])
expanding: ADG -> ADGH +1

agenda: Stack([AB, ADE, ADGH])
expanding: ADGH -> ADGHE +1

[(None, ’A’), (1, ’D’), (2, ’G’), (1, ’H’), (2, ’I’)]

states visited = 7

Depth-First Search Properties

• May run forever if we don’t apply pruning rule 1.

• May run forever in an infinite domain.

• Doesn’t necessarily find the shortest path.

• Efficient in the amount of space it requires to store the agenda.

Breadth-First Search

def search(initialState, goalTest, actions, successor):
agenda = Queue()
if goalTest(initialState):

return [(None, initialState)]
agenda.push(SearchNode(None, initialState, None))
while not agenda.empty():

parent = agenda.pop()

newChildStates = []

for a in actions:

newS = successor(parent.state, a)
newN = SearchNode(a, newS, parent)
if goalTest(newS):

return newN.path()
elif newS in newChildStates: # pruning rule 2

pass
elif parent.inPath(newS): # pruning rule 1

pass
else:

newChildStates.append(newS)
agenda.push(newN)

return None

Breadth-First Search Example

A B C

D E F

G H I

Breadth-First Search Transcript

agenda: Queue([A]) 1
expanding: A -> AB, AD +2

agenda: Queue([AB, AD])
expanding: AB -> ABC, ABE +2

agenda: Queue([AD, ABC, ABE])
expanding: AD -> ADE, ADG +2

agenda: Queue([ABC, ABE, ADE, ADG])
expanding: ABC -> ABCF +1

agenda: Queue([ABE, ADE, ADG, ABCF])
expanding: ABE -> ABED, ABEF, ABEH +3

agenda: Queue([ADE, ADG, ABCF, ABED, ABEF, ABEH])
expanding: ADE -> ADEB, ADEF, ADEH +3

agenda: Queue([ADG, ABCF, ABED, ABEF, ABEH, ADEB, ADEF, ADEH])
expanding: ADG -> ADGH +1

agenda: Queue([ABCF, ABED, ABEF, ABEH, ADEB, ADEF, ADEH, ADGH])
expanding: ABCF -> ABCFE +1

[(None, ’A’), (0, ’B’), (1, ’C’), (1, ’F’), (2, ’I’)]

states visited = 16

•	 Always

Breadth-First Search Properties

returns a shortest path to a goal state, if a goal state

exists in the set of states reachable from the start state.

•	 May run forever in an infinite domain if there is no solution.

•	 Requires more space than depth-first search.

Still Too Much Searching

Breadth-first search, visited 16 nodes: but there are only 9 states!

A B C

D E F

G H I

We should be able to reduce the search even further.

Dynamic Programming Principle

The shortest path from X to Z that goes through Y is made up of

• the shortest path from X to Y and

• the shortest path from Y to Z.

We only need to remember the shortest path from the start state

to each other state!

Dynamic Programming in Breadth-First Search

The first path that BFS finds from start to X is the shortest path

from start to X.

We only need to remember the first path we find from the start

state to each other state.

Dynamic Programming as a Pruning Technique

Don’t consider any path that visits a state that you have already

visited via some other path.

Need to remember the first path we find to each state.

Use dictionary called visited

Breadth-First Search with Dynamic Programming

def breadthFirstDP(initialState, goalTest, actions, successor):
agenda = Queue()
if goalTest(initialState):

return [(None, initialState)]
agenda.push(SearchNode(None, initialState, None))
visited = {initialState: True}
while not agenda.empty():

parent = agenda.pop()
for a in actions:

newS = successor(parent.state, a)
newN = SearchNode(a, newS, parent)
if goalTest(newS):

return newN.path()
elif visited.has_key(newS): # rules 1, 2, 3

pass
else:

visited[newS] = True
agenda.push(newN)

return None

Breadth-First with Dynamic Programming Example

A B C

D E F

G H I

Breadth-First with Dynamic Programming Transcript

agenda: Queue([A]) visited: A 1
expanding: A -> AB, AD +2

agenda: Queue([AB, AD]) visited: A, B, D
expanding: AB -> ABC, ABE +2

agenda: Queue([AD, ABC, ABE]) visited: A, B, C, D, E
expanding: AD -> ADG +1

agenda: Queue([ABC, ABE, ADG]) visited A, B, C, D, E, G
expanding: ABC -> ABCF +1

agenda: Queue([ABE, ADG, ABCF]) visited A, B, C, D, E, F, G
expanding: ABE -> ABEH +1

agenda: Queue([ADG, ABCF, ABEH]) visited A, B, C, D, E, F, G, H
expanding: ADG -> x

agenda: Queue([ABCF, ABEH])
expanding: ABCF -> x

[(None, ’A’), (0, ’B’), (1, ’C’), (1, ’F’), (2, ’I’)]

states visited = 8

Summary

Developed two search algorithms

– depth-first search

– breadth-first search

Developed three pruning rules

– don’t consider any path that visits the same state twice

– if multiple actions lead to same state, only consider one of them

– dynamic programming: only consider the first path to a given state

Nano-Quiz Makeup: Wednesday, May 4, 6-11pm, 34-501.

– everyone can makeup/retake NQ 1

– everyone can makeup/retake two additional NQs

– you can makeup/retake other NQs excused by Sˆ3

If you makeup/retake a NQ, the new score will replace the old

score, even if the new score is lower!

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms
http://ocw.mit.edu
http://ocw.mit.edu/terms

