
11/28/12

1

6.02 Fall 2012 Lecture 21, Slide #1

6.02 Fall 2012
Lecture #21: Reliable Data Transport

•  Redundancy via careful retransmission
•  Sequence numbers & acks
•  Two protocols: stop-and-wait & sliding window
•  Timeouts and round-trip time (RTT) estimation

6.02 Fall 2012 Lecture 21, Slide #2

The Problem

•  Given: Best-effort network in which
– Packets may be lost arbitrarily
– Packets may be reordered arbitrarily

– Packet delays are variable (queueing)

– Packets may even be duplicated

•  Sender S and receiver R want to communicate reliably
– Application at R wants all data bytes in exactly the same

order that S sent them
– Each byte must be delivered exactly once

•  These functions are provided by a reliable transport
protocol
– Application �layered above� transport protocol

6.02 Fall 2012 Lecture 21, Slide #3

Proposed Plan
•  Transmitter

– Each packet includes a sequentially increasing sequence number
– When transmitting, save (xmit time,packet) on un-ACKed list

– When acknowledgement (ACK) is received from the destination
for a particular sequence number, remove the corresponding
entry from un-ACKed list

– Periodically check un-ACKed list for packets sent awhile ago
•  Retransmit, update xmit time in case we have to do it again!

•  “awhile ago”: xmit time < now � timeout

•  Receiver
– Send ACK for each received packet, reference sequence number

– Deliver packet payload to application

Stop-and-W ait Protocol
Sender Receiver S R S R

Data 1
Data 1 1

Data 1
ACK 1

RTT X

ou
n

d
-t

ri
p
 t

im
e

Data 2 X

ACK 2
Timeout

Retransmit
Data 1 Data 3

Data 1
ACK 1

T
T
 =

 r

ACK 3

R

Duplicate Normal behavior Data loss +
packet reception (no losses) retransmission

Wanted “exactly once”, got “at least once”
6.02 Fall 2012 Lecture 21, Slide #4

11/28/12

2

#5

Revised Plan
•  Transmitter

– Each packet includes a sequentially increasing sequence numb
– When transmitting, save (xmit time,packet) on un-ACKed list

– When acknowledgement (ACK) is received from the destination
for a particular sequence number, remove the corresponding
entry from un-ACKed list

– Periodically check un-ACKed list for packets sent awhile ago
•  Retransmit, update xmit time in case we have to do it again!

•  “awhile ago”: xmit time < now � timeout

•  Receiver
– Send ACK for each received packet, reference sequence number

– Deliver packet payload to application in sequence number order
•  By keeping track of next sequence number to be delivered to app, it’

easy to recognize duplicate packets and not deliver them a second
time.

6.02 Fall 2012 Lecture 21, Slide

er

s

Issues
•  Protocol must handle lost packets correctly

– Lost data: retransmission will provide missing data
– Lost ACK: retransmission will trigger another ACK from receiver

•  Size of packet buffers
– At transmitter

•  Buffer holds un-ACKed packets

•  Stop transmitting if buffer space an issue

– At receiver
•  Buffer holds packets received out-of-order

•  Stop ACKing if buffer space an issue

•  Choosing timeout value: related to RTT
– Too small: unnecessary retransmissions

– Too large: poor throughput
•  Delivery stalled while waiting for missing packets

6.02 Fall 2012 Lecture 21, Slide #6

Throughput of Stop-and-W ait
•  We want to calculate the expected time, T (in seconds)

between successful deliveries of packets. If N data packets
are sent (N large), the time to send them will be N*T, so
Throughput = N/NT = 1/T data packets per second

•  We can’t just assume T = RTT because packets get lost
– E.g.: N links in the round trip between sender and receiver

– If the per-link probability of losing a data/ACK packet is p, then
the probability it’s delivered over the link is (1-p), and thus the
probability it’s delivered over N links is (1-p)N.

–  So the probability a data/ACK packet gets lost is L = 1 – (1-p)N.

•  Now we can write an equation for T in terms of RTT and the
timeout, RTO: T = (1− L) ⋅RTT + L ⋅ RTO+T()

L
= RTT + RTO

1− L

6.02 Fall 2012 Lecture 21, Slide #7 6.02 Fall 2012 Lecture 21, Slide #8

 The Best Case
•  Occurs when RTT is the same for every packet, so

timeout is slightly larger than RTT

L 1
T = RTT + RTT = RTT

1− L 1− L
(1− L)

Throughput =
RTT

•  If bottleneck link can support 100 packets/sec and the RTT
is 100 ms, then, using stop-and-wait, the maximum
throughput is at most only 10 packets/sec.

– Urk! Only 10% utilization

– We need a better reliable transport protocol…

11/28/12

3

Idea: Sliding Window Protocol

•  Use a window
SENDER RECEIVER –  Allow W packets outstanding (i.e.,

unack’d) in the network at once
(W is called the window size).

–  Overlap transmissions with ACKs

•  Sender advances the window by 1 for
each in-sequence ack it receives
– I.e., window slides
– So, idle period reduces
– Pipelining

•  Assume that the window size, W, is
fixed and known
– Later, we will discuss how one might

set it
– W = 3 in the example on the left

6.02 Fall 2012 Lecture 21, Slide #9 6.02 Fall 2012 Lecture 21, Slide #10

dr
1 2 3 4 5 6 1 2 3 4 5

window = 2-6

Sn

Rcvr
p1

a1 a2

p2

Sliding Window in Action
window = 1-5

W = 5 in this example

window = 2-6
window = 3-7

1 22 33 44 55 66 7

Sndr
a1 a2 a3

Rcvr
p1 p2 p3

Sliding Window in Action

Window definition: If window is W, then max number of
unacknowledged packets is W

 This is a fixed-size sliding window

6.02 Fall 2012 Lecture 21, Slide #11 6.02 Fall 2012 Lecture 21, Slide #12

Sender
Receiver

1
2
3
4
5

6
7
8
9
10

X

1
2
3
4
5

6
7

9
10 11

11
12

13

14

3333333

44

3

2222ee eeeeeee

4 4
8

11
12

13
8 LectuLecttttLectLectuLectutuuuuuuuuuuuurererererererrrerrerLLLLL00012222222 2222222

T
IM

E
O

U
T

8
9
1

1
1

1
8888888

11RXMIT

ACKs

Packet lost

Sender’s window size = 5

11/28/12

4

6.02 Fall 2012 Lecture 21, Slide #13

 560

 580

 600

 620

 640

 660

 680

 800 820 840 860 880 900

"trace2-seq"
"trace2-ack"

Time (ms)

D
a
ta

/
A

C
K

 s
eq

u
en

ce
 n

u
m

b
er

Data ACKs

RTT

RTO

Window

Rxmit ACKs for rxmitted
packets (most probably)

Data/ACK sequence tr ace
 Sliding Window Implementation

•  Transmitter
– Each packet includes a sequentially increasing sequence number
– When transmitting, save (xmit time,packet) on un-ACKed list

– Transmit packets if len(un-ACKed list) ≤ window size W

– When acknowledgement (ACK) is received from the destination
for a particular sequence number, remove the corresponding
entry from un-ACKed list

– Periodically check un-ACKed list for packets sent awhile ago
•  Retransmit, update xmit time in case we have to do it again!

•  “awhile ago”: xmit time < now � timeout

•  Receiver
– Send ACK for each received packet, reference sequence number

– Deliver packet payload to application in sequence number order
•  Save delivered packets in sequence number order in local buffer

(remove duplicates). Discard incoming packets which have already
been delivered (caused by retransmission due to lost ACK).

•  Keep track of next packet application expects. After each reception,
deliver as many in-order packets as possible.

6.02 Fall 2012 Lecture 21, Slide #14

6.02 Fall 2012 Lecture 21, Slide #15

RTT Measurements

6.02 Fall 2012

http://nms.csail.mit.edu/papers/index.php?detail=208

Lecture 21, Slide #16

© Association for Computing Machinery. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Courtesy of the Cooperative Association for Internet Data Analysis. Used with permission.

http://nms.csail.mit.edu/papers/index.php?detail=208
http://ocw.mit.edu/fairuse

11/28/12

5

6.02 Fall 2012 Lecture 21, Slide #17
17

Ping
latency

D
el

a
y

(m
il
li
se

co
n

d
s)

AT&T Wireless on iPhone 3G

mu: 1697.2 ms
stddev: 2346.5 ms
min:155.6 ms
max:12126.6 ms

Time (s)
6.02 Fall 2012 Lecture 21, Slide #18

�������	�

�
��
��

�	
�

Data from Verizon Wireless 3G network

mu: 1554.8 ms
stddev: 1563.8 ms
min: 82.5 ms
max: 9912.4 ms

RTT s can be highly variable

6.02 Fall 2012 Lecture 21, Slide #19

2000 4000 6000 RTT value (ms)

Mean > 1.5 seconds
Std dev > 1.5 seconds

In this data set,
if we pick a timeout
of 6 seconds, then
P(spurious rxmit) is
about 3%.

CDF of RTT over V erizon Wireless 3G Network
Cumulative probability (CDF)

Estimating RTT from Data
•  Gather samples of RTT by comparing time when ACK arrives

with time corresponding packet was transmitted
– Sample of random variable with some unknown distribution (not

necessarily Gaussian!)

•  Chebyshev’s inequatility tells us that for a random variable X
with mean µ and finite variance σ2:

1
P(X −μ ≥ kσ) ≤

k2

– To reduce the chance of a spurious (i.e., unnecessary)
retransmission – packet wasn’t lost, just the round trip time for
packet/ACK was long – we want our timeout to be greater than
most observed RTTs

– So choose a k that makes the chances small…

– We need an estimate for µ and σ

6.02 Fall 2012 Lecture 21, Slide #20

11/28/12

6

6.02 Fall 2012 Lecture 21, Slide #21

|H|

Ω

α decreases

Exponential Weighted Moving Aver age (EWMA)
[A low-pass filter – see frequency response]

srtt ← α*rtt_sample + (1-α)*srtt

6.02

α = 0.1 α = 0.5
Responds too quickly?

Fall 2012 Lecture 21, Slide #22

Response to One Long RTT Sample

α = 0.1 α = 0.5

Doesn’t respond quickly enough?

6.02 Fall 2012 Lecture 21, Slide #23

RTT changes from 1 to 2 T imeout Algorithm
•  EWMA for smoothed RTT (srtt)

– srtt � �*rtt_sample + (1-�)*srtt
– Typically 0.1 ≤ � ≤ 0.25 on networks prone to congestion.

TCP uses �=0.125.

•  Use another EWMA for smoothed RTT deviation (srttdev)
– Mean linear deviation easy to compute (but could also do std

deviation)

– dev_sample = |rtt_sample – srtt|

– srttdev � �*dev_sample + (1-�)*srttdev
TCP uses �= 0.25

•  Retransmit Timeout, RTO
– RTO = srtt + k·srttdev

– k = 4 for TCP

– Makes the �tail probability� of a spurious retransmission low

– On successive retransmission failures, double RTO
(exponential backoff)

6.02 Fall 2012 Lecture 21, Slide #24

MIT OpenCourseWare
http://ocw.mit.edu

6.02 Introduction to EECS II: Digital Communication Systems
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

