
MIT OpenCourseWare
http://ocw.mit.edu 

6.033 Computer System Engineering
Spring 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu/terms
http://ocw.mit.edu


M.I.T. DEPARTMENT OF EECS

This course m
akes use of A

thena, M
IT's U

N
IX

-based com
puting environm

ent. O
C

W
 does not provide access to this environm

ent.

6.033 - Computer System Engineering Crypto Hands-On Assignment

Hands-on 6: Cryptography and Certificates

This hands-on assignment is due at the beginning of Recitation 23.

The goal of this hands-on is to give you an introduction to mathematics and the algorithmic building blocks of moderns cryptographic protocols. Before
attempting this hands-on, you should read Chapter 11 of the class notes.

Part 1: Big Numbers and Brute-Force Attacks

One way to unseal a sealed message is to try every possible key. This kind of attack is known as a brute-force attack or a key search attack. The longer the
key, the harder the attack.

Keys are almost always represented as blocks of binary data. Some cryptographic transformations use a fixed number of bits, while others allow a variable
number. The table below lists some common cryptographic transformations and the key sizes that they use:

Cipher Key Size
The Data Encryption Standard (DES) 56 bits
RC-2 40-1024 bits
RC-4 40-1024 bits
Advanced Encryption Standard (AES) 128, 192 or 256 bits

Although there are many factors that come into play when evaluating the strength of a cryptographic transformation, the length of the key is clearly
important. This is because an attacker who is in possession of a sealed message can always mount a brute-force attack. Since longer keys have more possible
values than shorter keys, longer keys are more resistant to brute-force attacks. (Note: this does not mean that cryptographic transformations that use longer
keys are more secure. It may still be possible to attack a flaw in the algorithm, rather than simply testing every possible key. For example, the obsolete
LUCIFER cryptographic transformation uses a 128-bit shared secret, while the DES uses a 56-bit key. But LUCIFER, unlike the DES, was susceptible to a
particular kind of attack called differential cryptanalysis. This attack method was not publicly known at the time that the DES was published, but it was
secretly known by the National Security Agency mathematicians who worked on DES.)

In this problem we will explore the impact of different key lengths on system security.

This course makes use of Athena, MIT's UNIX-based computing environment. OCW does not provide access to this environment.

http://www.rsa.com/rsalabs/node.asp?id=2249
http://www.rsa.com/rsalabs/node.asp?id=2250
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf


In general, because a key of n bits can have 2n possible values, there can be at most 2n different keys. For example, a 16-bit key can have 216 or 65,536 
different values. If you had a computer that could try 100 of these keys every second, it would take 654 seconds or roughly 11 minutes to try all possible 
keys. (If you are cracking many keys, the expected time to crack any given key is half that, as on average you will need to try half of the keys before you 
find the right one. Of course you could get lucky and try the key on your first attempt, or you could be unlucky and have to try nearly every single key.) 

In your study of cryptography, you will discover that many products have the ability to use either so-called "weak" or "export-grade" encryption and 
"strong" or so-called "domestic" or "military-grade" cryptography. Usually the "weak" cryptography is limited to an effective secret key length of just 40 
bits. The 40-bit restriction dates from a time when the United States government had regulations prohibiting the exportation of products containing strong 
cryptographic technology. Even though these regulations were largely eliminated more than five years ago, their legacy lives on today. For example, 
Microsoft Office XP uses a 40-bit RC2 key to seal documents that are given a "password." 

With clever programming, a modern desktop computer can try over a million RC2 keys every second. 

Question 1.1: What is the maximum amount of time that it would take for a computer that can try 1 million RC2 keys every second to do a brute-force 
attack on a Microsoft Office document sealed with a cryptographic transformation that uses a 40-bit shared secret? 

Question 1.2: Microsoft Office 2003 uses the AES cryptographic transformation with a 128-bit shared secret to control access to documents controlled by 
Windows Rights Management technologies. If AES keys can be tried with the same speed as RC2 keys using the computer described in Question 1.1, what 
is the maximum amount of time that it would take for a brute-force attack on a single document sealed with the Windows Rights Management technology? 

Question 1.3: How does your answer to question 1.2 compare to the age of the Universe, currently estimated at somewhere between 13.5 billion and 14 
billion years? 

With advances in technology it may be possible at some point in the future to have billions of high-speed computers in a very small volume. 

Question 1.4: If you upgrade your computer to system that has a billion processing elements, each of which can try a billion keys in a second, is your secret 
still safe from attack? 

In fact, computers are getting faster every year. Moore's law is commonly believed to hold that computers are doubling in speed every 18 months. What's 
more, faster techniques are being developed for reversing cryptographic transformations. Thus, simple estimates for the lifetime of a sealing key that do not 
take into account the relentless march of technology are inherently flawed. 

Question 1.5: If you start with a computer today that can try 1 million keys every second and every 18 months you throw away that computer buy another 
for this project that is twice as fast, how long will it be until you have tried all possible 128-bit AES sealing keys? 

One of the challenges in mounting a successful brute-force attack is that your program needs to be able to have some way of recognizing when it has 
guessed the correct key. Sometimes such recognitions are easy: the sealed text decrypts to English or another human-readable language. Your program can 
do a letter-frequency analysis on the resulting text and determine if the entropy is low or high; low-entropy indicates that the unsealing operation was 
successful. Recognizing a correct key becomes trivial if the decrypted message includes a checksum or message authentication code (MAC). In general, the 



longer the ciphertext, the easier it is to recognize when a correct key is guessed. 

Extra Credit: The AES standard allows for key lengths of 128 bits, 192 bits and 256 bits. Can you give a practical reason why a 192-bit or a 256-bit shared 
secret would provide more security than a 128-bit shared secret? 

Part 2: Cryptographic Hashing 

This section explores some properties of cryptographic hashing functions. For more information on cryptographic hashes, see section 11.2.3 of the notes. 
Cryptographic hashes are used as building blocks of many security primitives, including digital signatures (see section 11.3 of the notes). 

The SHA-1 cryptographic hash function produces a 160-bit value, called a residue or a hash, for any given input. Since 160 bits is 20 bytes, there must be 
many files that have the same hash. (For example, given a file that is 21 bytes in length, there should be approximately 255 other 21-byte files that have the 
same hash. This is a simple application of the pigeonhole principle.) Nevertheless, no two files have yet been found that have the same SHA-1 hash, known 
as a "collision". 

Note: While no SHA-1 collisions have been found, security flaws have been identified in it, and new hash standards are currently under development. 

A version of the SHA-1 is built into the openssl command-line program that is available on Athena (/usr/athena/bin/openssl) and MacOS X (/usr/bin
/openssl). When openssl is run with the sha1 argument and one or more filenames, the program computes the SHA-1 hash of each file and prints the result 
as a hexadecimal string. If no files are presented, the program calculates the SHA-1 of any input presented on standard input. 

For example, to compute the SHA-1 of the file /etc/motd you could use this command: 

athena% openssl sha1 /etc/motd
SHA1(/etc/motd)= 1f3a70355ed8d34c5cc742fd64c2eca42b0d1846
athena% 

Notice that this 160-bit output is encoded in 40 hexadecimal digits.


To calculate the SHA-1 of the string "MIT", you could use this command:


athena% echo "MIT" | openssl sha1
7bf26f2a41bb62f30b10f8a740df2508f86023e6 
athena% 

(In fact, the code that is shown above is actually the SHA-1 of the three characters M, I and T followed by a newline character.)


Question 2.1: Compute the SHA-1 of the string "Massachusetts Institute of Technology" (either with or without the newline).


Question 2.2: Estimate the chance that there another file on any computer at MIT that has the same SHA-1 value that you calculated in question 2.1. Show

your work. To do this problem, you will need a rough estimate of the number of computers at MIT, and the number of unique files that each of those


http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html
http://www.openssl.org/


computers contains. 

Question 2.3: Compute how long it would take to find a string with the same SHA-1 hash as your answer in Question 2.1, using today's computers. 

Part 3: GPG, Signatures and Certificates 

This part of the hands-on assignment uses GNU Privacy Guard (GPG), a message security program that is based on the program Pretty Good Privacy 
(PGP). The GPG program implements a full suite of signing and sealing algorithms, bulk cryptographic transformation algorithms, and routines for the 
management of keys. It also interoperates with network of so-called key servers on the Internet on which people can publish their public keys. 

GPG operates under the web of trust model. In this model you trust a certificate because it is vouched for by someone whose identity you already trust. You 
may contrast this with the certificate authority model, where a centralized third party, such as Verisign, vouches for the authenticity of a certificate. 

To complete this part of the hands-on you will need a copy of GPG. You can log in to Project Athena and type add gnu, as there is a copy of GPG in the 
Athena "gnu" locker. Alternatively, you can download a copy of GPG from GNU privacy guard and install it on your own computer. 

To learn about GPG's commands type man gpg and gpg --help. Note: it is a good idea to try both of these commands, because each one will teach you 
something different about GPG. 

You can use GPG's --version command to discover the transformation algorithms, ciphers, and hashes that it supports. 

The following questions make use of GPG Key A66F3DB0 which was created especially for this course and uploaded to the GPG key server pgp.mit.edu
You will need to obtain the public key A66F3DB0 and add it GPG's database of public keys, which the program calls its key ring. You can either download 
the key from the key server using the GPG command gpg --keyserver pgp.mit.edu --recv-keys A66F3DB0 or else you can copy the key below, run 
GPG with the --import command, and paste the key into GPG's standard input. 

Here is the GPG key: 

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.4.9 (GNU/Linux) 

mQGiBEnyLyQRBADeYRikleBYPFVknLgcU++1r2ByasAyFKFdGJOOQNeYOKYg7kfb
QItN81QEisi8192a/m90W/YkXdWBvWSSf7B2U38swt6phJclyR477/+NfijV7boc
p9EUGv4VT80IKFlmGgRPH4W26LEK1yyXMbd7YomdaRomhd1+diwXRk7ZNwCguMIp
nBByzXSohhywpY1YM2fJJqkD/RS34ZEEfTCipkrTUEjMhy8xWfkfLyS2CeY++K5/
S9K3wYwFFWquP4WVS32ZhlBQI5WsSUPiFFS58H+zUuPZuom2RL6nbjWlqepsKhpS
7MjkNBs3PlF6mEeRPyVdohdBf7xWRazDkeWWNyxFrx0re/G2B5lq+PdmfEvQgQJP
rg57BAC9wY3Us62/e8ts6t+La9BwBiuC+BKsQM3vhG7ZIK8/fCTAzIoXBmOCztTd
FbyM3WmEgKZUO3rRBq9YLvG+esModuxgrfP6a/FtVNHxtH4nM2FbG8IorRaH+gmR
YL1l/q7Xk8bU7eHdR2htpprhYEi25nQgnD2jRiLWLDTej8E0h7RKTUlUIDYuMDMz
IFNwcmluZyAyMDA5IChLZXkgZm9yIGhhbmRzLW9uICM2IC0gQ3J5cHRvKSA8Ni4w
MzMtc3RhZmZAbWl0LmVkdT6IZgQTEQIAJgUCSfIvJAIbAwUJABpeAAYLCQgHAwIE 

http://www.gnupg.org/
http://en.wikipedia.org/wiki/Web_of_trust
http://en.wikipedia.org/wiki/Certificate_authority
http://www.gnupg.org/


FQIIAwQWAgMBAh4BAheAAAoJEBaHOXumbz2wfo4An3xUSPpxBa3WGFNjKufBImk7
MLuKAJ40zfj7jZpZsGs23xui/BnJxOUNHIhGBBARAgAGBQJJ87O7AAoJEPsKSMOO
yaTlhAUAn2ii1jCJztV8G0B62AhgYu6Pc+rIAJ0Y9hdHjzqu8RBA372YwbU0Kf+U
2Q==
=4zp8
-----END PGP PUBLIC KEY BLOCK-----

GPG keys can be used for signing documents or for signing other keys. By convention, signatures on documents are used to verify the document's author 
and to demonstrate that the document has not been modified since it was signed. Signatures on keys mean that the person signing the key is making an 
affirmative statement that a given public key really belongs to the person whose name is embedded inside the key. Keys with signatures binding them to 
names are called certificates. (See sections 11.5.1 and 11.7.4 of the notes.) 

GPG supports supports a signature format called clear signature in which the signature appears at the bottom of the message. The course locker contains 
two messages that have GPG clear signatures at the bottom. Both documents were signed with the key that we created for this course, but one of the 
documents were modified. 

Document #1: 
Filename: /mit/6.033/www/assignments/gpg-message1.txt.asc 

URL: http://web.mit.edu/6.033/www/assignments/gpg-message1.txt.asc 
Contents:	 -----BEGIN PGP SIGNED MESSAGE----
-

Hash: SHA1


This is a message that was signed with GPG!

-----BEGIN PGP SIGNATURE----
-
Version: GnuPG v1.4.9 (GNU/Linux)


iEYEARECAAYFAkn14o4ACgkQFoc5e6ZvPbB7hgCgt74rbbP7MPmcNlDgNVBwZALm

QPUAn3ggZLHC/Z/35QvuAkm6+tefu5Ll

=qgXk

-----END PGP SIGNATURE----
-

Document #2: 
Filename: /mit/6.033/www/assignments/gpg-message2.txt.asc 

URL: http://web.mit.edu/6.033/www/assignments/gpg-message2.txt.asc 
Contents: -----BEGIN PGP SIGNED MESSAGE-----

Hash: SHA1 

This is not a message that was signed with GPG! 

http://web.mit.edu/6.033/www/assignments/gpg-message1.txt.asc


-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.9 (GNU/Linux) 

iEYEARECAAYFAkn14q0ACgkQFoc5e6ZvPbDsCgCdFQ8nZmaCm0atWTaNAbAGW5lU
pGIAn2Rn94eH1tbvvmZxEniu9zst1KkK
=Ipaf
-----END PGP SIGNATURE-----

Question 3.1: In three sentences or less, describe how signing is different from sealing.


Question 3.2: Check that you have imported the key by using the GPG --list-keys command. What is the email address associated with the key?


Question 3.3: One of the above documents were modified after it was signed. Tell us which one! Show the output from GPG that proves your assertion.


Question 3.4: Given your knowledge of signing, explain what information must be stored in the PGP signatures of the above messages?


Question 3.5: Someone has signed key A66F3DB0, verifying its itentity. Whose signature is on this key? (Hint: You may need use --list-sigs and to

access the key server to download additional keys to answer this question.) How do you know that the signature is legitimate? Can you trust that key

A66F3DB0 was really made for this course? Why or why not?


Question 3.6: Download key 0B72EB0F from the key server. Whose key is this? Can you trust this key because you got it from the official MIT key

server? Why or why not?



