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Hey, everyone. Welcome back. Today, we're going to do another fun problem that has to do with 

a random number of coin flips. So the experiment we're going to run is as follows. We're given a 

fair six-sided die, and we roll it.  

And then we take a fair coin, and we flip it the number of times indicated by the die. That is to 

say, if I roll a four on my die, then I flip the coin four times. And then we're interested in some 

statistics regarding the number of heads that show up in our sequence. In particular, we want to 

compute the expectation and the variance of the number of heads that we see.  

So the first step of this problem is to translate the English to the math. So we have to define some 

notation. I went ahead and did that for us. I defined n to be the outcome of the die role. Now, 

since we flip the coin the number of times shown by the die roll, n is equivalently the number of 

flips that we perform. And n, of course, is a random variable, and I've written its PMF up here.  

So Pn of n is just a discrete uniform random variable between 1 and 6, because we're told that the 

die has six sides and that it's fair. Now, I also defined h to be the number of heads that we see. So 

that's the quantity of interest. And it turns out that Bernoulli random variables will be very 

helpful to us in this problem.  

So I defined x sub i as 1 if the ith flip is heads, and 0 otherwise. And what we're going to do now 

is, we're going to use these x sub i's to come up with an expression for h. So if you want to count 

the number of heads, one possible thing you could do is start with 0 and then look at the first 

coin flip. If it's heads, you add 1 to 0, which I'm going to call your running sum.  

If the first flip is tails, you add 0. And similarly, after that, after every trial, if you see heads, you 

add 1 to your running sum. If you see a tails, you add 0. And in that way, we can precisely 

compute h. So the mathematical statement of what I just said is that h is equal to x1 plus x2 plus 

x3, all the way through x sub n.  

So now, we are interested in computing e of h, the expectation of h. So your knee jerk reaction 

might be to say, oh, well, by linearity of expectation, we know that this is an expectation of x1, et 

cetera through the expectation of xn. But in this case, you would actually be wrong. Don't do 

that.  

And the reason that this is not going to work for us is because we're dealing with a random 

number of random variables. So each xi is a random variable. And we have capital n of them. 

But capital n is a random variable. It denotes the outcome of our die roll.  

So we actually cannot just take the sum of these expectations. Instead, we're going to have to 

condition on n and use iterated expectation. So this is the mathematical statement of what I just 

said. And the reason why this works is because conditioning on n will take us to the case that we 
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already know how to deal with, where we have a known number of random variables. And of 

course, iterated expectations holds, as you saw in lecture.  

I will briefly mention here that the formula we're going to derive is derived in the book. And it 

was probably derived in lecture. So if you want, you can just go to that formula immediately. But 

I think the derivation of the formula that we need is quick and is helpful. So I'm going to go 

through it quickly.  

Let's do it over here. Plugging in our running sum for h, we get this expression-- x1 plus x2 et 

cetera plus xn, conditioned on n. And this, of course, is n times the expectation of x sub i. So 

again, I'm going through this quickly, because it's in the book. But this step holds, because each 

of these xi's have the same statistics.  

They're all Bernoulli with parameter of 1/2, because our coin is fair. And so I used x sub i to say 

it doesn't really matter which integer you pick for i, because the expectation of xi is the same for 

all i. So this now, the expectation of x sub i, this is just a number, it's just some constant, so you 

can pull it out of the expectation. So you get the expectation of x sub i times the expectation of n.  

So I gave away the answer to this a second ago. But x sub i is just a Bernoulli random variable 

with parameter of success of 1/2. And we know already that the expectation of such a random 

variable is just p, or 1/2. So this is 1/2 times expectation of n. And now n we know is a discrete 

uniform random variable.  

And there's a formula that I'm going to use, which hopefully some of you may remember. If you 

have a discrete uniform random variable that takes on values between a and b-- let's use w-- if 

you call this random variable w, then we have that the variance of w is equal to b minus a times b 

minus a plus 2 divided by 12. So that's the variance.  

We don't actually need the variance, but we will need this later. And the expectation of w-- 

actually, let's just do it up here right ahead for this problem. Because we have a discrete uniform 

random variable, the expectation is just the middle. So you agree hopefully that the middle is 

right at 3.5, which is also 7/2. So this is times 7/2, which is equal to 7/4.  

So we are done with part of part a. I'm going to write this answer over here, so I can erase. And 

we're going to do something very similar to compute the variance. To compute the variance, we 

are going to also condition on n. So we get rid of this source of randomness. And then we're 

going to use law of total variance, which you've also seen in lecture. And again, the formula for 

this variance is derived in the book.  

So I'm going to go through it quickly. But make sure you understand this derivation, because it 

exercises a lot of stuff we taught you. So this, just using law of total variance, is the variance of 

expectation of h given n, plus the expectation of the variance of h given n. And now, plugging in 

this running sum for h, you get this. It's a mouthful to write.  

Bear with me. x1 through xn given n-- so I didn't do anything fancy. I just plugged this into here. 

So this term is similar to what we saw in a previous problem. By linearity of expectation and due 
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to the fact that all of the x i's are distributed in the same way, they have the same expectation, 

this becomes n times the expectation of x sub i. And let's do this term over here.  

This term-- well, conditioned on n, this n is known. So we essentially have a finite known sum of 

independent random variables. We know that the variance of a sum of independent random 

variables is the sum of the variances.  

So this is the variance of x1 plus the variance of x2 et cetera, plus the variance of xn. And 

furthermore, again, because all of these xi's have the same distribution, the variance is the same. 

So we can actually write this as n times the variance of x sub i, where x sub i just corresponds to 

one of the trials. It doesn't matter which one, because they all have the same variance and 

expectation.  

So now, we're almost home free. This is just some scaler. So we can take it out of the variance, 

but we have to square it. So this becomes expectation of xi squared times the variance of n. And 

then this variance is also just a scalar, so we can take it outside.  

So then we get variance of x sub i times expectation of n. Now, we know that the expectation of 

x sub i is just the probability of success, which is 1/2. So we have 1/2 squared, or 1/4, times the 

variance of n. So that's where this formula comes in handy.  

b is equal to 6, a is equal to 1. So we get that the variance of n is equal to 5 times-- and then 5 

plus 2 is 7-- divided by 12. So this is just a formula from the book that you guys hopefully 

remember. So we get 35/12. And then the variance of xi, we know the variance of a Bernoulli 

random variable is just p times 1 minus p.  

So in our case, that's 1/2 times 1/2, which is 1/4. So we get 1/4. And then the expectation of n, 

we remember from our previous computation, is just 7/2. So I will let you guys do this arithmetic 

on your own time. But the answer comes out to be 77/48.  

So I will go ahead and put our answer over here-- 77/48-- so that I can erase. So I want you guys 

to start thinking about part b while I erase. Essentially, you do the same experiment that we did 

in part a, except now we use two dice instead of one. So in part b, just to repeat, you now have 

two dice.  

You roll them. You look at the outcome. If you have an outcome of four on one die and six on 

another die, then you flip the coin 10 times. So it's the same exact experiment. We're interested 

in the number of heads we want the expectation and the variance. But this step is now a little bit 

different.  

Again, let's approach this by defining some notation first. Now, I want to let n1 be the outcome 

of the first die. And then you can let n2 be the outcome of the second die. And we'll start with 

just that.  

So one way you could approach this problem is say, OK, if n1 is the outcome of my first die and 

n2 is the outcome of my second die, then the number of coin flips that I'm going to make is n1 
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plus n2. This is the total coin flips. So you could just repeat the same exact math that we did in 

part a, except everywhere that you see an n, you replace that n with n1 plus n2.  

So that will get you to your answer, but it will require slightly more work. We're going to think 

about this problem slightly differently. So the way we are thinking about it just now, we roll two 

dice at the same time. We add the results of the die rolls. And then we flip the coin that number 

of times.  

But another way you can think about this is, you roll one die, and then you flip the coin the 

number of times shown by that die and count the number of heads. And then you take the second 

die and you roll it. And then you flip the coin that many more times and count the number of 

heads after that. So you could define h1 to be number of heads in the first n1 coin flips.  

And you could just let h2 be the number of heads in the last n2 coin flips. So hopefully that 

terminology is not confusing you. Essentially, what I'm saying is, n1 plus n2 means you'll have 

n1 flips, followed by n2 flips, for a total of n1 plus n2 flips. And then within the first n1 flips, 

you can get some number of heads, which we're calling h1.  

And in the last n2 flips, you can get some number of heads, which is h2. So the total number of 

heads that we get at the end-- I'm going to call it h star-- is equal to h1 plus h2. And what part b 

is really asking us for is the expectation of h star and the variance of h star. But here's where 

something really beautiful happens.  

h1 and h2 are independent, and they are statistically the same. So the reason why they're 

independent is because-- well, first of all, all of our coin flips are independent. And they're 

statistically the same, because the experiment is exactly the same. And everything's independent.  

So instead of imagining one person rolling two die and then summing the outcomes and flipping 

a coin that many times and counting heads, you can imagine one person takes one die and goes 

into one room. A second person takes a second die and goes into another room. They run their 

experiments.  

Then they report back to a third person the number of heads. And that person adds them together 

to get h star. And in that scenario, everything is very clearly independent. So the expectation of h 

star-- you actually don't need independence for this part, because linearly of expectation always 

holds. But you get the expectation of h1 plus the expectation of h2.  

And because these guys are statistically equivalent, this is just two times the expectation of h. 

And the expectation of h we calculated in part a. So this is 2 times 7 over 4. Now, for the 

variance, here's where the independence comes in. I'm actually going to write this somewhere 

where I don't have to bend over.  

So the variance of h star is equal to the variance of h1 plus the variance of h2 by independence. 

And that's equal to 2 times the variance of h, because they are statistically the same. And the 

variance of h we computed already. So this is just 2 times 77 over 48.  
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So the succient answer to part b is that both the mean and the variance double from part A. So 

hopefully you guys enjoyed this problem. We covered a bunch of things. So we saw how to deal 

with having a random number of random variables.  

Usually we have a fixed number of random variables. In this problem, the number of random 

variables we were adding together was itself random. So to handle that, we conditioned on n. 

And to compute expectation, we use iterated expectation.  

To compute variance, we used law of total variance. And then in part b, we were just a little bit 

clever. We thought about how can we reinterpret this experiment to reduce computation. And we 

realized that part b is essentially two independent trials of part a. So both the mean and the 

variance should double.  
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