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For part E and F of the problem, we'll be introducing a new notion of convergence, so-called the 

convergence E mean squared sense. We say that xn converges to a number c in mean squared, if 

as we take and go to infinity, the expected value of xn minus c squared goes to 0. To get a sense 

of what this looks like, let's say we let c equal to the expected value of xn, and let's say the 

expected value of xn is always the same.  

So the sequence of random variables has the same mean. Well, if that is true, then mean square 

convergence simply says the limit of the variance of xn is 0. So as you can imagine, somehow as 

xn becomes big, the variance of xn is very small, so xn is basically highly concentrated around c. 

And by this I mean, the density function for xn. So that's the notion of convergence we'll be 

working with.  

Our first task here is to show that the mean square convergence is in some sense stronger than 

the convergence in probability that we have been working with from part A to part D. That is, if I 

know that xn converged to some number c in mean squared, then this must imply that xn 

converges to c in probability. And now, we'll go show that for part E.  

Well, let's start with a definition of convergence in probability. We want to show that for a fixed 

constant epsilon the probability that xn minus c, greater than epsilon, essentially goes to 0 as n 

goes to infinity. To do so, we look at the value of this term.  

Well, the probability of absolute value xn minus c greater than epsilon is equal to the case if we 

were to square both sides of the inequality. So that is equal to the probability that xn minus c 

squared greater than epsilon squared. We can do this because both sides are positive, hence this 

goes through.  

Now, to bound this equality, we'll invoke the Markov's Inequality, which it says this probability 

of xn, some random variable greater than epsilon squared, is no more than is less equal to the 

expected value of the random variable. In this case, the expected value of x minus c squared 

divided by the threshold that we're trying to cross. So that is Markov's Inequality.  

Now, since we know xn converges to c in mean squared, and by definition, mean square we 

know this precise expectation right here goes to 0. And therefore, the whole expression goes to 0 

as n goes to infinity. Because the denominator here is a constant and the top, the numerator here, 

goes to 0. So now we have it. We know that the probability of xn minus c absolute value greater 

than epsilon goes to 0 as n goes to infinity, for all fixed value of epsilons and this is the 

definition of convergence in probability.  

Now that we know if xn converges to c mean squared, it implies that xn converges to c in 

probability. One might wonder whether the reverse is true. Namely, if we know something 

converges in probability to a constant, does the same sequence of random variables converge to 
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the same constant in mean squared? It turns out that is not quite the case. The notion of 

probability converges in probability is not as strong as a notion of convergence in mean squared.  

Again, to look for a counter example, we do not have to go further than the yn's we have been 

working with. So here we know that yn converges to 0 in probability. But it turns out it does not 

converge to 0 in the mean squared. And to see why this is the case, we can take the expected 

value of yn minus 0 squared, and see how that goes.  

Well, the value of this can be computed easily, which is simply 0, if yn is equal to 0, with 

probability 1 minus n plus n squared when yn takes a value of n, and this happens with 

probability 1 over n. The whole expression evaluates to n, which blows up to infinity as n going 

to infinity. As a result, the limit n going to infinity of E of yn minus 0 squared is infinity and is 

not equal to 0. And there we have it, even though yn converges to 0 in probability, because the 

variance of yn, in some sense, is too big, it does not converge in a mean squared sense.  
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