6.041SC Probabilistic Systems Analysis and Applied Probability, Fall 2013 Transcript - Recitation: Convergence in Probability Example

In this problem, we're given a random variable X which has a uniform distribution in the interval negative 1 to 1 . In other words, if we were to draw out the PDF of X , we see that in the interval negative 1 to 1 , it has value $1 / 2$. Now we're given a sequence random variables $\mathrm{X} 1, \mathrm{X} 2$, and so on, where each Xi has the same distribution as X and different Xi's are independent.

For part a, we would like to know if the sequence Xi converges to some number-- let's call it c-in probability as i goes to infinity-- whether this is true. Let's first recall the definition of convergence in probability. If this does happen, then by definition, we'll have that for every epsilon greater than 0 , the probability Xi minus c greater equal to epsilon, this quantity will go to 0 in the limit of i going to infinity. In other words, with very high probability, we will find Xi to be very concentrated around the number c if this were to be the PDF of Xi.

Now, can this be true? Well, we know that each Xi is simply a uniform distribution over negative 1 to 1 . It doesn't really change as we increase i. So intuitively, the concentration around any number c is not going to happen. So we should not expect a convergence in probability in this sense.

For part b , we would like to know whether the sequence Yi, defined as Xi divided by i , converges to anything in probability. Well, by just looking at the shape of Yi, we know that since the absolute value of Xi is less than 1 , then we expect the absolute value of Yi is less than $1 / \mathrm{i}$. So eventually, Yi gets very close to 0 as i goes to infinity. So it's safe to bet that maybe Yi will converge to 0 in probability.

Let's see if this is indeed the case. The probability of Yi minus 0 greater equal to epsilon is equal to the probability of Yi absolute value greater equal to epsilon. Now, previously we know that the absolute value of Yi is at most $1 / \mathrm{i}$ by the definition of Yi. And hence the probability right here is upper bounded by the probability of 1 i greater equal to epsilon.

Notice in this expression, there is nothing random. i is simply a number. Hence this is either 1 if i is less equal to $1 /$ epsilon, or 0 if i is greater than 1/epsilon.

Now, this tells us, as long as i is great enough-- it's big enough compared to epsilon-- we know that this quantity here is [INAUDIBLE] 0. And that tells us in the limit of i goes to infinity probability of Yi deviating from 0 by more than epsilon goes to 0 . And that shows that indeed, Yi converges to 0 in probability because the expression right here, this limit, holds for all epsilon.

Now, in the last part of the problem, we are looking at a sequence Zi defined by Xi raised to the i-th power. Again, since we know Xi is some number between negative 1 and 1 , this number raised to the i-th power is likely to be very small. And likely to be small in the sense that it will have absolute value close to 0 . So a safe guess will be the sequence Zi converges to 0 as well as i goes to infinity.

How do we prove this formally? We'll start again with a probability that Zi stays away from 0 by more than epsilon and see how that evolves. And this is equal to the probability that Xi raised to the i-th power greater equal to epsilon. Or again, we can write this by taking out the absolute value that Xi is less equal to negative epsilon raised to the 1 over i -th power or Xi greater equal to epsilon 1 over i-th power.

So here, we'll divide into two cases, depending on the value of epsilon. In the first case, epsilon is greater than 1 . Well, if that's the case, then we know epsilon raised to some positive power is still greater than 1. But again, Xi cannot have any positive density be on the interval negative 1 or 1. And hence we know the probability above, which is Xi less than some number smaller than negative 1 or greater than some number bigger than 1 is 0 . So that case is handled.

Now let's look at a case where epsilon is less than 1 , greater than 0 . So in this case, epsilon to the $1 / \mathrm{i}$ will be less than 1 . And it's not that difficult to check that since Xi has uniform density between negative 1 and 1 of magnitude $1 / 2$, then the probability here was simply 2 times $1 / 2$ times the distance between epsilon to the 1 over i-th power and 1.

So in order to prove this quantity converge to 0 , we simply have to justify why does epsilon to the $1 / \mathrm{i}$ converge to 1 as i goes to infinity. For that, we'll recall the properties of exponential functions. In particular, if a is a positive number and x is its exponent, if we were to take the limit as x goes to 0 and look at the value of a to the power of x , we see that this goes to 1 .

So in this case, we'll let a be equal to epsilon and x be equal to $1 / i$. As we can see that as i goes to infinity, the value of x, which is $1 / i$, does go to 0 . And therefore, in the limit i going to infinity, the value of epsilon to the 1 over i-th power goes to 1 .

And that shows if we plug this limit into the expression right here that indeed, the term right here goes to 0 as i goes to infinity. And all in all, this implies the probability of Zi minus 0 absolute value greater equal to epsilon in the limit of i going to infinity converges to 0 for all positive epsilon. And that completes our proof that indeed, Zi converges to 0 in probability.

MIT OpenCourseWare
http://ocw.mit.edu

6.041SC Probabilistic Systems Analysis and Applied Probability Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

