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In this problem, we're given a collection of 10 variables, x1 through x10, where each i, xi, is a 

uniform random variable between 0 and 1. So each i is uniform between 0 and 1, and all 10 

variables are independent. And we'd like to develop a bound on the probability that some of the 

10 variables, 1 to 10, being greater than 7 using different methods. So in part A we'll be using the 

Markov's inequality written here. That is, if we have a random variable, positive random variable 

x, the probability x is greater than a, where a is again some positive number, is bounded above 

by the expected value of x divided by a.  

And let's see how that works out in our situation. In our situation, we will call x the summation 

of i equal to 1 to 10xi, and therefore, E of x is simply 10 times E of x1, the individual ones, and 

this gives us 5. Here we use used the linearity of expectation such that the expectation of the sum 

of the random variable is simply the sum of the expectations. Now, we can invoke Markov's 

Inequality. It says x greater or equal to 7. This is less than E of x over 7, and this gives us 5 over 

7.  

For part B, let's see if we can improve the bound we got in part A using the Chebyshev 

inequality, which takes into account the variance of random variable x. Again, to refresh you on 

this, the Chebyshev Inequality says the probability that x deviates from its mean E of x, by more 

than a is bound above by the variance of x divided by a squared.  

So we have to actually do some work to transform the probability we're interested in, which is x 

greater or equal to 7, into the form that's convenient to use using the Chebyshev Inequality. To 

do so, we'll rewrite this probability as the probability of x minus 5 greater or equal to 2 simply by 

moving 5 from the right to the left. The reason we chose 5 is because 5 is equal to the expected 

value of x from part A as we know before.  

And in fact, this quantity is also equal to the probability that x minus 5 less or equal to negative 

2. To see why this is true, recall that x is simply the summation of the xi's, the 10 xi's, and each 

xi is a uniform random variable between 0 and 1. And therefore, each xi, the distribution of 

which is symmetric around its mean 1/2. So we can see that after we add up all the xi's, the 

resulting distribution x is also symmetric around its mean 5. And as a result, the probability of x 

minus 5 greater than 2 is now equal to the probability that x minus 5 less than negative 2.  

And knowing these two, we can then say they're both equal to 1/2 the probability x minus 5 

absolute value greater or equal to 2, because this term right here is simply the sum of both terms 

here and here. At this point, we have transformed the probability of x greater or equal to 7 into 

the form right here, such that we can apply the Chebyshev's Inequality basically directly.  

And we'll write the probably here being less than or equal to 1/2 times, applying the Chebyshev 

Inequality, variance of x divided by 2 squared. Now, 2 is the same as a right here, and this gives 

us 1/8 times-- now, the variance of x, we know is 10 times the variance of a uniform random 

variable between 0 and 1, which is 1/12, and that gives us 5/48.  
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Now, let's compare this with the number we got earlier using the Markov Inequality, which was 

5/7. We see that 5/48 is much smaller, and this tells us that, at least for this example, using the 

Chebyshev Inequality combined with the information of the variance of x, we're able to get a 

stronger upper bound on the probability of the event that we're interested in.  

Now, in part B, we saw that by using the additional information of the variance combined with 

the Chebyshev Inequality, we can improve upon bound given by Markov's Inequality. Now, in 

part C, we'll use a somewhat more powerful approach in addition to the Chebyshev Inequality, 

the so-called central limit theorem. Let's see if we can even get a better bound.  

To remind you what a central limit theorem is, let's say we have a summation of i equal to 1 to 

some number n of independent and identically distributed random variables xi. Now, the central 

limit theorem says the following. We take the sum right here, and subtract out its means, which 

is E of the same summation, and further, we'll divide out, what we call normalize, by the 

standard deviation of the summation. In other words, the square root of the variance of the sum 

of xi.  

So if we perform this procedure right here, then as the number of terms in the sums going to 

infinity, here as in goes to infinity, we will actually see that this random variable will converge in 

distribution in some way that will eventually look like a standard normal random variable with 

means 0 and 1. And since we know how the distribution of a standard normal looks like, we can 

go to table and look up certain properties of the resulting distribution. So that is a plan to do. So 

right now, we have about 10 variables. It's not that many compared to a huge numbering, but 

again, if we believe it's a good approximation, we can get some information out of it by using the 

central limit theorem.  

So we are interesting knowing that probability summation of i equal to 1 to 10 x1 greater or 

equal to 7. We'll rewrite this as 1 minus the probability the summation i equal to 1 to 10, and xi 

less equal to 7. Now, we're going to apply the scaling to the summation right here. So this is 

equal to 1 minus the probability summation i equal to 1 to 10xi minus 5. Because we know from 

previous parts that 5 is the expected value of the sum right here, and divided by square root of 

10/12.  

Again, earlier we know that 10/12 is the variance of the sum of xi's. And we'll do the same on the 

other side, writing it 7 minus 5 divided by square root of 10/12. Now, if we compute out the 

quantity right here, we know that this quantity is roughly 2.19, and by the central limit theorem, 

if we believe 10 is a large enough number, then this will be roughly equal to 1 minus the CDF of 

a standard normal evaluated at 2.19. And we could look up the number in the table, and this 

gives us number roughly, 0.014.  

Now let's do a quick summary of what this problem is about. We're asked to compute the 

probability of x greater or equal to 7, where x is the sum of 10 uniform random variables 

between 0 and 1, so we'll call it xi. We know that because each random variable has expectation 

1/2, adding 10 of them up, gives us expectation of 5. So this is essentially asking, what is the 

chance that x is more than two away from its expectation?  
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So if this is a real line, and 5 is here, maybe x has some distribution around 5, so the center what 

the expected value is at 5, we wonder how likely is it for us to see something greater than 7? 

Now, let's see where do we land on the probably spectrum from 0 to 1. Well, without using any 

information, we know the probability cannot be greater than 1, so a trivial upper bound for the 

probability right here will be 1.  

Well, for the first part we use Markov's Inequality and that gives us some number, which is 

roughly equal to 0.7. In fact, we got number 5/7, and this is from Markov's Inequality. Oh, it's 

better than 1, already telling us it cannot be between 0.7 and 1, but can we do better?  

Well, the part B, we see that all the way, using the additional information variance, we can get 

this number down to 5/48, which is roughly 0.1. Already, that's much better than 0.7. Can we 

even do better? And this is the Chebyshev, and it turns out we can indeed do better. Using the 

central limit theorem, we can squeeze this number all the way down to 0.014, almost a 10 times 

improvement over the previous number. This is from central limit theorem.  

As we can see, by using different bounding techniques, we can progressively improve the bound 

on the probability of x exceeding 7, and from this problem we learned that even with 10 

variables, the truth is more like this, which says that the distribution of x concentrates very 

heavily around 5, and hence, the probability of x being greater or equal to 7 could be much 

smaller than one might expect.  
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