6.041SC Probabilistic Systems Analysis and Applied Probability, Fall 2013 Transcript - Recitation: The Difference of Two Independent Exponential Random Variables

In this problem, Romeo and Juliet are to meet up for a date, where Romeo arrives at time x and Juliet at time y, where x and y are independent exponential random variables, with parameters lambda. And we're interested in knowing the difference between the two times of arrivals, we'll call it z , written as x minus y . And we'll like to know what the distribution of z is, expressed by the probability density function, f of z .

Now, we'll do so by using the so-called convolution formula that we learn in the lecture. Recall that if we have a random variable w that is the sum of two independent random variables, x plus y, now, if that's the case, we can write the probability [INAUDIBLE] function, fw,
[INAUDIBLE] as the following integration-- negative infinity to infinity fx little x times f of $y w$ minus x, integrated over x.

And to use this expression to calculate f of z , we need to do a bit more work. Notice w is expressed as a sum of two random variables, whereas z is expressed as the subtraction of y from x. But that's fairly easy to fix. Now, we can write z. Instead of a subtraction, write it as addition of x plus negative y.

So in the expression of the convolution formula, we'll simply replace y by negative y, as it will show on the next slide. Using the convolution formula, we can write f of z little z as the integration of f of x little x and f of negative $y z$ minus $x d x$. Now, we will use the fact that f of negative y, evaluated z minus x, is simply equal to f of y evaluated at x minus z.

To see why this is true, let's consider, let's say, a discreet random variable, y. And now, the probability that negative y is equal to negative 1 is simply the same as probability that y is equal to 1 . And the same is true for probability density functions. With this fact in mind, we can further write equality as the integration of x times f of y x minus zdx .

We're now ready to compute. We'll first look at the case where z is less than 0 . On the right, I'm writing out the distribution of an exponential random variable with a parameter lambda. In this case, using the integration above, we could write it as 0 to infinity, lambda e to the negative lambda x times lambda e to the negative lambda x minus z dx.

Now, the reason we chose a region to integrate from 0 to positive infinity is because anywhere else, as we can verify from the expression of fx right here, that the product of fx times fy here is 0 . Follow this through.

We'll pull out the constant. Lambda e to the lambda z, the integral from 0 to infinity, lambda e to the negative 2 lambda xdx . This will give us lambda e to the lambda z minus $1 / 2 \mathrm{e}$ to the negative 2 lambda x infinity minus this expression value at 0 .

And this will give us lamdba over 2 e to the lambda z . So now, we have an expression for f of z evaluated at little z when little z is less than 0 . Now that have the distribution of f of z when z is less than 0 , we'd like to know what happens when z is greater or equal to 0 . In principle, we can go through the same procedure of integration and calculate that value.

But it turns out, there's something much simpler. z is the difference between x and y , at negative z , simply the difference between y and x . Now, x and y are independent and identically distributed. And therefore, x minus y has the same distribution as y minus x .

So that tells us z and negative z have the same distribution. What that means is, is the distribution of z now must be symmetric around 0 . In other words, if we know that the shape of f of z below 0 is something like that, then the shape of it above 0 must be symmetric. So here's the origin.

For example, if we were to evaluate f of z at 1 , well, this will be equal to the value of f of z at negative 1 . So this will equal to f of z at negative 1 . Well, with this information in mind, we know that in general, f of z little z is equal to f of z negative little z. So what this allows us to do is to get all the information for z less than 0 and generalize it to the case where z is greater or equal to 0 .

In particular, by the symmetry here, we can write, for the case z greater or equal to 0 , as lambda over 2 e to the negative lambda z . So the negative sign comes from the fact that the distribution of f of z is symmetric around 0 . And simply, we can go back to the expression here to get the value. And all in all, this implies that f of z little z is equal to lambda over $2 e$ to the negative lambda absolute value of z .

This completes our problem.

MIT OpenCourseWare
http://ocw.mit.edu

6.041SC Probabilistic Systems Analysis and Applied Probability Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

