LECTURE 1	Sample space Ω
• Readings: Sections 1.1, 1.2	"List" (set) of possible outcomes
	List must be:
Lecture outline	 Mutually exclusive
• Probability as a mathematical framework for:	 Collectively exhaustive
 reasoning about uncertainty 	• Art: to be at the "right" granularity
 developing approaches to inference problems 	
Probabilistic models	
 sample space 	
– probability law	
Axioms of probability	
Simple examples	

- Two rolls of a tetrahedral die
- Sample space vs. sequential description

Sample space: Continuous example

 $\Omega = \{(x, y) \mid 0 \le x, y \le 1\}$

Probability axioms

- Event: a subset of the sample space
- Probability is assigned to events

Axioms:

- 1. Nonnegativity: $P(A) \ge 0$
- 2. Normalization: $P(\Omega) = 1$
- 3. Additivity: If $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$

•
$$P(\{s_1, s_2, \dots, s_k\}) = P(\{s_1\}) + \dots + P(\{s_k\})$$

= $P(s_1) + \dots + P(s_k)$

- Axiom 3 needs strengthening
- Do weird sets have probabilities?

Probability law: Example with finite sample space

• Let every possible outcome have probability 1/16

$$- P((X,Y) \text{ is } (1,1) \text{ or } (1,2)) =$$

$$- P({X = 1}) =$$

- P(X + Y is odd) =

$$- P(min(X, Y) = 2) =$$

Discrete uniform law

- Let all outcomes be equally likely
- Then,

 $\mathbf{P}(A) = \frac{\text{number of elements of } A}{\text{total number of sample points}}$

- Computing probabilities \equiv counting
- Defines fair coins, fair dice, well-shuffled card decks

Continuous uniform law

• Two "random" numbers in [0,1].

у

1

• Uniform law: Probability = Area

-
$$P(X + Y \le 1/2) = ?$$

$$- P((X,Y) = (0.5, 0.3))$$

Probability law: Ex. w/countably infinite sample space

- Sample space: $\{1, 2, \ldots\}$
- We are given $\mathbf{P}(n) = 2^{-n}$, $n = 1, 2, \dots$
- Find P(outcome is even)

 $P(\{2,4,6,\ldots\}) = P(2) + P(4) + \cdots = \frac{1}{2^2} + \frac{1}{2^4} + \frac{1}{2^6} + \cdots$

• Countable additivity axiom (needed for this calculation):

If A_1, A_2, \ldots are disjoint events, then:

$$\mathbf{P}(A_1 \cup A_2 \cup \cdots) = \mathbf{P}(A_1) + \mathbf{P}(A_2) + \cdots$$

6.041SC Probabilistic Systems Analysis and Applied Probability Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.