LECTURE 1

- Readings: Sections 1.1, 1.2

Lecture outline

- Probability as a mathematical framework for:
- reasoning about uncertainty
- developing approaches to inference problems
- Probabilistic models
- sample space
- probability Iaw
- Axioms of probability
- Simple examples

Sample space Ω

- "List" (set) of possible outcomes
- List must be:
- Mutually exclusive
- Collectively exhaustive
- Art: to be at the "right" granularity

Sample space: Discrete example

- Two rolls of a tetrahedral die
- Sample space vs. sequential description

Sample space: Continuous example
$\Omega=\{(x, y) \mid 0 \leq x, y \leq 1\}$
y

Probability axioms

- Event: a subset of the sample space
- Probability is assigned to events

Axioms:

1. Nonnegativity: $\mathbf{P}(A) \geq 0$
2. Normalization: $P(\Omega)=1$
3. Additivity: If $A \cap B=\varnothing$, then $\mathbf{P}(A \cup B)=\mathbf{P}(A)+$ $\mathbf{P}(B)$

- $\mathbf{P}\left(\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}\right)=\mathbf{P}\left(\left\{s_{1}\right\}\right)+\cdots+\mathbf{P}\left(\left\{s_{k}\right\}\right)$

$$
=\mathbf{P}\left(s_{1}\right)+\cdots+\mathbf{P}\left(s_{k}\right)
$$

- Axiom 3 needs strengthening
- Do weird sets have probabilities?

Probability law: Example with finite sample space

- Let every possible outcome have probability $1 / 16$
$-\mathbf{P}((X, Y)$ is $(1,1)$ or $(1,2))=$
$-\mathbf{P}(\{X=1\})=$
$-\mathbf{P}(X+Y$ is odd $)=$
$-\mathbf{P}(\min (X, Y)=2)=$

Discrete uniform Iaw

- Let all outcomes be equally likely
- Then,

$$
\mathbf{P}(A)=\frac{\text { number of elements of } A}{\text { total number of sample points }}
$$

- Computing probabilities \equiv counting
- Defines fair coins, fair dice, well-shuffled card decks

Continuous uniform law

- Two "random" numbers in $[0,1]$.
y

- Uniform law: Probability $=$ Area
$-\mathbf{P}(X+Y \leq 1 / 2)=?$
$-\mathbf{P}((X, Y)=(0.5,0.3))$

Probability law: Ex. w/countably infinite sample space

- Sample space: $\{1,2, \ldots\}$
- We are given $\mathbf{P}(n)=2^{-n}, n=1,2, \ldots$
- Find \mathbf{P} (outcome is even)

$\mathbf{P}(\{2,4,6, \ldots\})=\mathbf{P}(2)+\mathbf{P}(4)+\cdots=\frac{1}{2^{2}}+\frac{1}{2^{4}}+\frac{1}{2^{6}}+$.
- Countable additivity axiom (needed for this calculation):
If A_{1}, A_{2}, \ldots are disjoint events, then:
$\mathbf{P}\left(A_{1} \cup A_{2} \cup \cdots\right)=\mathbf{P}\left(A_{1}\right)+\mathbf{P}\left(A_{2}\right)+\cdots$

MIT OpenCourseWare
http://ocw.mit.edu

6.041SC Probabilistic Systems Analysis and Applied Probability Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

