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1. (a) The tree representation during the winter can be drawn as the following: 

0.8 Rain 

The forecast is 
"Rain" 

p 
0.2 No Rain 

0.1 Rain
1-p 

The forecast is 

"No Rain" 
0.9 No Rain 

Let A be the event that the forecast was “Rain,” 
let B be the event that it rained, and 
let p be the probability that the forecast says “Rain.” If it is in the winter, p = 0.7 and 

P(B | A)P(A) (0.8)(0.7) 56 
P(A | B) = = = . 

P(B) (0.8)(0.7) + (0.1)(0.3) 59 

Similarly, if it is in the summer, p = 0.2 and 

P(B | A)P(A) (0.8)(0.2) 2 
P(A | B) = = = . 

P(B) (0.8)(0.2) + (0.1)(0.8) 3 

(b) Let C be the event that Victor is carrying an umbrella.

Let D be the event that the forecast is no rain.

The tree diagram in this case is:


0.5 Umbrella 

Missed the forecast 

0.2 
0.5 No umbrella 

Rain (umbrella)
0.8 p 

Saw the forecast 

1-p 
No Rain (no umbrella) 

P(D) = 1 − p 

P(C) = (0.8)p + (0.2)(0.5) = 0.8p + 0.1 

P(C | D) = (0.8)(0) + (0.2)(0.5) = 0.1 
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Therefore, P(C) = P(C | D) if and only if p = 0. However, p can only be 0.7 or 0.2, which 
implies the events C and D can never be independent, and this result does not depend on 
the season. 

(c) Let us first find the probability of rain if Victor missed the forecast. 

P(actually rains | missed forecast) = (0.8)p + (0.1)(1 − p) = 0.1 + 0.7p. 

Then, we can extend the tree in part (b) as follows: 

Actually no rain

0.1+0.7p Actually rain 

0.5	 Umbrella 
0.9-0.7p 

Missed the forecast Actually rain
0.1+0.7p 

0.2 
0.5 No umbrella 

0.9-0.7p Actually no rain 

Actually no rain

0.8 Actually rain 
Rain (umbrella)

0.8	 p 
0.2 

Saw the forecast 

1-p 0.1 Actually rain 
No Rain (no umbrella) 

0.9 Actually no rain 

Therefore, given that Victor is carrying an umbrella and it is not raining, we are looking at 
the two shaded cases. 

(0.8)p(0.2) 
P(saw forecast | umbrella and not raining) = 

(0.8)p(0.2) + (0.2)(0.5)(0.9 − 0.7p) 

In fall and winter, p = 0.7, so the probability is 112 .
153


In summer and spring, p = 0.2, so the probability is 8 .

27 

2. (a) i. No 

1 2 3 4 5 
Die 1 

Overall, there are 25 different outcomes in the sample space. For a total of 10, we 
should get a 5 on both rolls. Therefore A ⊂ B, and 

P(A ∩ B) P(A)
P(B|A) = = = 1 

P(A) P(A) 

D
ie

 2
 

1 

2 

3 

4 

5 
total is 10 
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We observe that to get at least one 5 showing, we can have 5 on the first roll, 5 on the 
second roll, or 5 on both rolls, which corresponds to 9 distinct outcomes in the sample 
space. Therefore 

9 
P(B) = � P(B|A)= 

25 

ii. No Given event A, we know that both roll outcomes must be 5. Therefore, we could 
not have event C occur, which would require at least one 1 showing. Formally, there 
are 9 outcomes in C, and 

9 
P(C) = 

25


But

P(C|A) = 0 � P(C)
= 

(b) i. No Out of the total 25 outcomes, 5 outcomes correspond to equal numbers in the two 
rolls. In half of the remaining 20 outcomes, the second number is higher than the first 
one. In the other half, the first number is higher than the second. Therefore, 

10 
P(F ) = 

25


There are eight outcomes that belong to event E:


E = {(1, 2), (2, 3), (3, 4), (4, 5), (2, 1), (3, 2), (4, 3), (5, 4)}. 

To find P(F |E), we need to compute the proportion of outcomes in E for which the 
second number is higher than the first one: 

1 
P(F |E) = � P(F )= 

2 

ii. Yes Conditioning on event D reduces the sample space to just four outcomes 

{(2, 5), (3, 4), (4, 3), (5, 2)} 

which are all equally likely. It is easy to see that


2 1 2 1 1

P(E|D) = = , P(F |D) = = , P(E ∩ F |D) = = P(E|D)P(F |D)

4 2 4 2	 4 

3.	 (a) Suppose we choose old widgets. Before we choose any widgets, there are 500 · 0.15 = 75 
defective old widgets. The probability that we choose two defective widgets is 

P(two defective|old) = P(first is defective|old) · P(second is defective|first is defective, old) 

75 74 
= = 0.02224 

500 499 

Now let’s consider the new widgets. Before we choose any widgets, there are 1500 · 0.05 = 75 
defective old widgets. Similar to the calculations above, 

P(two defective|new) = P(first is defective|new) · P(second is defective|first is defective, new) 

75 74 
= = 0.002568 

1500 1499 
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By the total probability law, 

P(two defective) = P(old) · P(two defective|old) 

+P(new) · P(two defective|new) 

1 1 
= · 0.02224 + · 0.002568 = 0.01240. 

2 2 

Note that this number is very close to what we would get if we ignored the effects of removing 
one defective widget before choosing the second widget: 

P(two defective) = P(old) · P(two defective|old) 

+	 P(new) · P(two defective|new) 

1 1 
≈ · 0.152 + · 0.052 = 0.0125. 

2 2 

(b)	 Using Bayes’ rule, 

P(old) · P(two defective|old) 
P(old|two defective) = 

P(old) · P(two defective|old) + P(new) · P(two defective|new) 
1

2 · 0.02224

=
 =
 0.8965


1

2 ·

1

2 ·
 0.002568
0.02224 +


4.	 (a) 
P(find in A and in A) = P(in A) · P(find in A|in A) = 0.4 · 0.25 = 0.1 

P(find in B and in B) = P(in B) · P(find in B|in B) = 0.6 · 0.15 = 0.09 

Oscar should search in Forest A first. 

(b) Using Bayes’ Rule,


P(not find in A|in A) · P(in A)

P(in A|not find in A) = 

P(not find in A|in A) · P(in A) + P(not find in A|in B) · P(in B) 

(0.75) · (0.4) 1 
=	 = 

(0.4) · (0.75) + (1) · (0.6) 3 

(c) Again, using Bayes’ Rule,


P(find dog|looked in A) · P(looked in A)

P(looked in A|find dog) = 

P(find dog) 

(0.25) · (0.4) · (0.5) 10 
=	 = 

(0.25) · (0.4) · (0.5) + (0.15) · (0.6) · (0.5) 19 

(d) In order for Oscar to find the dog, it must be in Forest A, not found on the first day, alive, 
and found on the second day. Note that this calculation requires conditional independence 
of not finding the dog on different days and the dog staying alive. 

P(find live dog in A day 2) = P(in A) · P(not find in A day 1|in A) 

·P(alive day 2) · P(find day 2|in A) 

1 
= 0.4 · 0.75 · (1 − ) · 0.25 = 0.05 

3
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5. (a) We proceed as follows: 

P(A ∩ (B ∪ C)) = P((A ∩ B) ∪ (A ∩ C)) 

= P(A ∩ B) + P(A ∩ C) − P(A ∩ B ∩ C) 

* 
= P(A)P(B) + P(A)P(C) − P(A)P(B)P(C) 

= P(A) [P(B) + P(C) − P(B)P(C)] 

= P(A)P(B ∪ C), 

where the equality marked with ∗ follows from the independence of A, B, and C. 

(b) Proof 1: If A and B are independent, then Ac and Bc are also independent (see Problem 
1.43, page 63 for the proof).


For any two independent events U and V , DeMorgan’s Law implies


P(U ∪ V ) = P((U c ∩ V c)c) = 1 − P(U c ∩ V c) = 1 − P(U c) · P(V c) 

= 1 − (1 − P(U))(1 − P(V )). 

We proceed to prove the statement by induction. Letting U = A1 and V = A2, the base 
case is proven above. Now we assume that the result holds for any n and show that it holds 
for n + 1. For independent {A1, . . . , An, An+1}, let B = ∪n

i=1Ai. It is easy to show that B 
and An+1 are independent. Therefore, 

P(A1 ∪ A2 ∪ . . . ∪ An+1) = 1 − (1 − P(B)) · (1 − P(An+1)) 
n+1 

=
 1 −
 (1 − P(Ai)), 
i=1 

which completes the proof.


Proof 2: Alternatively, we can use the version of the DeMorgan’s Law for n events:


P(A1 ∪ A2 ∪ . . . ∪ An) = P((Ac 
1 ∩ Ac 

2 ∩ . . . ∩ Ac
n)c) 

= 1 − P(Ac 
1 ∩ Ac 

2 ∩ . . . ∩ Ac
n). 

But we know that Ac 
1, A

c 
2, . . . , A

c
n are independent. Therefore 

P(A1 ∪ A2 ∪ . . . ∪ An) = 1 − P(Ac 
1)P(Ac 

2) . . . P(Ac
n) 

n 

=
 1 −
 (1 − P(Ai)). 
i=1 

G1† . (a)	 The figure below describes the sample space via an infinite tree. The leaves of this tree 
are exactly all finite tournament histories; in addition, the two infinite paths represent the 
two infinite tournament histories that are possible. Note that the winner of the first game 
is either Alice or Bob; from then on, the winner of a game is either the winner of the 
previous game (in which case we have reached a leaf and the tournament has ended) or the 
player that sat out the previous game.The outcomes of the sample space correspond to the 
finite histories (which are identified with the leafs of the tree) and the two infinite histories: 
ACBACB... and BCABCA... 
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A C B A C B A C B A 

A C B A C B A C B A ... 

B C A B C A B C A B 

B C A B C A B C A B ... 

(b) The probability of an event is 1/2k times the number of finite histories contained in the 
event. The probability of the event consisting of one or both infinite histories is 0. We 
have to show that this probability law satisfies the three probability axioms. It clearly 
satisfies nonnegativity and additivity. To check normalization, we have to verify that the 
probabilities of all tournament histories sum up to 1. 

Start by noticing that two of the histories are infinite and have probability 0. Each one of 
the remaining histories has some finite length k ≥ 2 (and hence is represented by one of the 
two leaves of the tree of the figure above at depth k) and probability 1/2k . Hence, summing 
all probabilities we get 

∞ �
2


1

· = 
2k 

∞ � 1


2k−1 =

∞ � 1 1


=

2k+1 2


∞ � 1 1 1

2 · 0 +
 1.
= = 

2k 2 1 − 1/2

k=2 k=2 k=0 k=0 

(c) The probability that exactly 2 games will be played is the sum of the probabilities of the 
two leaves at depth 2; that is, 

1 1 1 
P (exactly 2 games) = + = . 

22 22 2


Similarly, the probability that exactly i games will be played, for i = 3, 4, 5, is


P (exactly 3 games) = 
2

1 
3 2

1 
3 4

1 ,+ = 

P (exactly 4 games) = 
2

1 
4 2

1 
4 

1

8 ,+ = 
1 1 1P (exactly 5 games) = 
25 25 16 .+ = 

Hence, the probability that the tournament lasts no more than 5 games is 

1 1 1 1 15 
P (at most 5 games) = + + + = . 

2 4 8 16 16 

Hence, it’s pretty probable that the tournament will last at most that much. 

The probability that Alice wins the tournament is the sum of the probabilities of the leaves 
of the tree that are labeled “A”; that is, 

1 1 1 1 1 1 
(
22 25 28 + · · ·) + ( 

24 27 210 + + + + + · · ·), 

where the first summation includes all leaves from the upper part of the tree, while the 
second one takes care of the leaves on the lower part. Calculating, we have 

∞ �1 1 1 1 1 1 5
 1 5 1 5

(1 + + + · · ·) + (1 + + + · · ·) = = = . 

8j 16 1 − 1/8 14 23 26 23 264
 16
 16

j=0 
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By symmetry (note the correspondence between the histories where Alice wins and the 
histories where Bob does), Bob’s probability of winning is 5 , as well. Then, since the 

14

outcomes where nobody wins (these are the two infinite tournament histories) have total

probability 0, Carol wins with probability 1− 5 − 5 4
= . Hence, by not participating in 

14 14 14

the first game, Carol enters the tournament with a disadvantage. 
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