Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)

Tutorial 1 Solutions
 September 16/17, 2010

1. If $A \subset B$, then $\mathbf{P}(B \cap A)=\mathbf{P}(A)$ But we know that in order for A and B to be independent, $\mathbf{P}(B \cap A)=\mathbf{P}(A) \mathbf{P}(B)$. Therefore, A and B are independent if and only if $\mathbf{P}(B)=1$ or $\mathbf{P}(A)=0$. This could happen, for example, if B is the universe or if A is empty.
2. This problem is similar in nature to Example 1.24, page 40. In order to compute the success probability of individual sub-systems, we make use of the following two properties, derived in that example:

- If a serial sub-system contains m components with success probabilities $p_{1}, p_{2} \ldots p_{m}$, then the probability of success of the entire sub-system is given by

$$
\mathbf{P}(\text { whole system succeeds })=p_{1} p_{2} p_{3} \ldots p_{m}
$$

- If a parallel sub-system contains m components with success probabilities $p_{1}, p_{2} \ldots p_{m}$, then the probability of success of the entire sub-system is given by

$$
\mathbf{P}(\text { whole system succeeds })=1-\left(1-p_{1}\right)\left(1-p_{2}\right)\left(1-p_{3}\right) \ldots\left(1-p_{m}\right)
$$

Let $\mathbf{P}(X \rightarrow Y)$ denote the probability of a successful connection between node X and Y . Then,

$$
\begin{aligned}
& \mathbf{P}(A \rightarrow B)=\mathbf{P}(A \rightarrow C) \mathbf{P}(C \rightarrow E) \mathbf{P}(E \rightarrow B) \text { (since they are in series) } \\
& \mathbf{P}(A \rightarrow C)=p \\
& \mathbf{P}(C \rightarrow E)=1-(1-p)(1-\mathbf{P}(C \rightarrow D) \mathbf{P}(D \rightarrow E)) \\
& \mathbf{P}(E \rightarrow B)=1-(1-p)^{2}
\end{aligned}
$$

The probabilities $\mathbf{P}(C \rightarrow D), \mathbf{P}(D \rightarrow E)$ can be similarly computed as

$$
\begin{aligned}
& \mathbf{P}(C \rightarrow D)=1-(1-p)^{3} \\
& \mathbf{P}(D \rightarrow E)=p
\end{aligned}
$$

The probability of success of the entire system can be obtained by substituting the subsystem success probabilities:

$$
\mathbf{P}(A \rightarrow B)=p\left(1-(1-p)\left(1-\left(1-(1-p)^{3}\right) p\right)\left(1-(1-p)^{2}\right) .\right.
$$

Massachusetts Institute of Technology
Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

3. The Chess Problem.

(a) i. $\mathbf{P}(2$ nd Rnd Req $)=(0.6)^{2}+(0.4)^{2}=0.52$
ii. $\mathbf{P}($ Bo Wins 1st Rnd $)=(0.6)^{2}=0.36$
iii. $\mathbf{P}($ Al Champ $)=1-\mathbf{P}($ Bo Champ $)-\mathbf{P}($ Ci Champ $)$
$=1-(0.6)^{2} *(0.5)^{2}-(0.4)^{2} *(0.3)^{2}=0.8956$
(b) i. $\mathbf{P}($ Bo Challenger $\mid 2$ nd Rnd Req $)=\frac{(0.6)^{2}}{0.52}=\frac{0.36}{0.52}=0.6923$
ii. $\mathbf{P}(\mathrm{Al}$ Champ \mid 2nd Rnd Req)
$=\mathbf{P}($ Al Champ \mid Bo Challenger, 2nd Rnd Req $) \times \mathbf{P}($ Bo Challenger $\mid 2$ nd Rnd Req $)$
$+\mathbf{P}(\mathrm{Al}$ Champ $\mid \mathrm{Ci}$ Challenger, 2nd Rnd Req $) \times \mathbf{P}(\mathrm{Ci}$ Challenger $\mid 2$ nd Rnd Req $)$
$=\left(1-(0.5)^{2}\right) \times 0.6923+\left(1-(0.3)^{2}\right) \times 0.3077$
$=0.7992$
(c) $\mathbf{P}(($ Bo Challenger $) \mid\{(2$ nd Rnd Req $) \cap($ One Game $)\})=\frac{(0.6)^{2} *(0.5)}{(0.6)^{2} *(0.5)+(0.4)^{2} *(0.7)}$
$=\frac{(0.6)^{2}(0.5)}{0.2920}=0.6164$

MIT OpenCourseWare
http://ocw.mit.edu

6.041SC Probabilistic Systems Analysis and Applied Probability
 Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

