Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)

Problem Set 4: Solutions

1. (a) From the joint PMF, there are six (x, y) coordinate pairs with nonzero probabilities of occurring. These pairs are $(1,1),(1,3),(2,1),(2,3),(4,1)$, and $(4,3)$. The probability of a pair is proportional to the sum of the squares of the coordinates of the pair, $x^{2}+y^{2}$. Because the probability of the entire sample space must equal 1 , we have:

$$
(1+1) c+(1+9) c+(4+1) c+(4+9) c+(16+1) c+(16+9) c=1
$$

Solving for c, we get $c=\frac{1}{72}$.
(b) There are three sample points for which $y<x$:

$$
\mathbf{P}(Y<X)=\mathbf{P}(\{(2,1)\})+\mathbf{P}(\{(4,1)\})+\mathbf{P}(\{(4,3)\})=\frac{5}{72}+\frac{17}{72}+\frac{25}{72}=\frac{47}{72} .
$$

(c) There are two sample points for which $y>x$:

$$
\mathbf{P}(Y>X)=\mathbf{P}(\{(1,3)\})+\mathbf{P}(\{(2,3)\})=\frac{10}{72}+\frac{13}{72}=\frac{23}{72} .
$$

(d) There is only one sample point for which $y=x$:

$$
\mathbf{P}(Y=X)=\mathbf{P}(\{(1,1)\})=\frac{2}{72} .
$$

Notice that, using the above two parts,

$$
\mathbf{P}(Y<X)+\mathbf{P}(Y>X)+\mathbf{P}(Y=X)=\frac{47}{72}+\frac{23}{72}+\frac{2}{72}=1
$$

as expected.
(e) There are three sample points for which $y=3$:

$$
\mathbf{P}(Y=3)=\mathbf{P}(\{(1,3)\})+\mathbf{P}(\{(2,3)\})+\mathbf{P}(\{(4,3)\})=\frac{10}{72}+\frac{13}{72}+\frac{25}{72}=\frac{48}{72} .
$$

(f) In general, for two discrete random variable X and Y for which a joint PMF is defined, we have

$$
p_{X}(x)=\sum_{y=-\infty}^{\infty} p_{X, Y}(x, y) \quad \text { and } \quad p_{Y}(y)=\sum_{x=-\infty}^{\infty} p_{X, Y}(x, y)
$$

In this problem the ranges of X and Y are quite restricted so we can determine the marginal PMFs by enumeration. For example,

$$
p_{X}(2)=\mathbf{P}(\{(2,1)\})+\mathbf{P}(\{(2,3)\})=\frac{18}{72} .
$$

Overall, we get:

$$
p_{X}(x)=\left\{\begin{array}{ll}
12 / 72, & \text { if } x=1, \\
18 / 72, & \text { if } x=2, \\
42 / 72, & \text { if } x=4, \\
0, & \text { otherwise }
\end{array} \quad \text { and } \quad p_{Y}(y)= \begin{cases}24 / 72, & \text { if } y=1 \\
48 / 72, & \text { if } y=3 \\
0, & \text { otherwise }\end{cases}\right.
$$

Massachusetts Institute of Technology

Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)
(g) In general, the expected value of any discrete random variable X equals

$$
\mathbf{E}[X]=\sum_{x=-\infty}^{\infty} x p_{X}(x) .
$$

For this problem,

$$
\mathbf{E}[X]=1 \cdot \frac{12}{72}+2 \cdot \frac{18}{72}+4 \cdot \frac{42}{72}=3
$$

and

$$
\mathbf{E}[Y]=1 \cdot \frac{24}{72}+3 \cdot \frac{48}{72}=\frac{7}{3} .
$$

To compute $\mathbf{E}[X Y]$, note that $p_{X, Y}(x, y) \neq p_{X}(x) p_{Y}(y)$. Therefore, X and Y are not independent and we cannot assume $\mathbf{E}[X Y]=\mathbf{E}[X] \mathbf{E}[Y]$. Thus, we have

$$
\begin{aligned}
\mathbf{E}[X Y] & =\sum_{x} \sum_{y} x y p_{X, Y}(x, y) \\
& =1 \cdot \frac{2}{72}+2 \cdot \frac{5}{72}+4 \cdot \frac{17}{72}+3 \cdot \frac{10}{72}+6 \cdot \frac{13}{72}+12 \cdot \frac{25}{72}=\frac{61}{9} .
\end{aligned}
$$

(h) The variance of a random variable X can be computed as $\mathbf{E}\left[X^{2}\right]-\mathbf{E}[X]^{2}$ or as $\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right]$. We use the second approach here because X and Y take on such limited ranges. We have

$$
\operatorname{var}(X)=(1-3)^{2} \frac{12}{72}+(2-3)^{2} \frac{18}{72}+(4-3)^{2} \frac{42}{72}=\frac{3}{2}
$$

and

$$
\operatorname{var}(Y)=\left(1-\frac{7}{3}\right)^{2} \frac{24}{72}+\left(3-\frac{7}{3}\right)^{2} \frac{48}{72}=\frac{8}{9} .
$$

X and Y are not independent, so we cannot assume $\operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)$. The variance of $X+Y$ will be computed using $\operatorname{var}(X+Y)=\mathbf{E}\left[(X+Y)^{2}\right]-(\mathbf{E}[X+Y])^{2}$. Therefore, we have

$$
\begin{gathered}
\mathbf{E}\left[(X+Y)^{2}\right]=4 \cdot \frac{2}{72}+9 \cdot \frac{5}{72}+25 \cdot \frac{17}{72}+16 \cdot \frac{10}{72}+25 \cdot \frac{13}{72}+49 \cdot \frac{25}{72}=\frac{547}{18} . \\
(\mathbf{E}[X+Y])^{2}=(\mathbf{E}[X]+\mathbf{E}[Y])^{2}=\left(3+\frac{7}{3}\right)^{2}=\frac{256}{9} .
\end{gathered}
$$

Therefore,

$$
\operatorname{var}(X+Y)=\frac{547}{18}-\frac{256}{9}=\frac{35}{18} .
$$

(i) There are four (x, y) coordinate pairs in $A:(1,1),(2,1),(4,1)$, and $(4,3)$. Therefore, $\mathbf{P}(A)=\frac{1}{72}(2+5+17+25)=\frac{49}{72}$. To find $\mathbf{E}[X \mid A]$ and $\operatorname{var}(X \mid A), p_{X \mid A}(x)$ must be calculated. We have

$$
p_{X \mid A}(x)= \begin{cases}2 / 49, & \text { if } x=1 \\ 5 / 49, & \text { if } x=2 \\ 42 / 49, & \text { if } x=4 \\ 0, & \text { otherwise }\end{cases}
$$

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science 6.041/6.431: Probabilistic Systems Analysis

$$
\begin{aligned}
\mathbf{E}[X \mid A] & =1 \cdot \frac{2}{49}+2 \cdot \frac{5}{49}+4 \cdot \frac{42}{49}=\frac{180}{49}, \\
\mathbf{E}\left[X^{2} \mid A\right] & =1^{2} \cdot \frac{2}{49}+2^{2} \cdot \frac{5}{49}+4^{2} \cdot \frac{42}{49}=\frac{694}{49}, \\
\operatorname{var}(X \mid A) & =\mathbf{E}\left[X^{2} \mid A\right]-(\mathbf{E}[X \mid A])^{2}=\frac{694}{49}-\left(\frac{180}{49}\right)^{2}=\frac{1606}{2401},
\end{aligned}
$$

2. Consider a sequence of six independent rolls of this die, and let X_{i} be the random variable corresponding to the i th roll.
(a) What is the probability that exactly three of the rolls have result equal to 3? Each roll X_{i} can either be a 3 with probability $1 / 4$ or not a 3 with probability $3 / 4$. There are $\binom{6}{3}$ ways of placing the 3 's in the sequence of six rolls. After we require that a 3 go in each of these spots, which has probability $(1 / 4)^{3}$, our only remaining condition is that either a 1 or a 2 go in the other three spots, which has probability $(3 / 4)^{3}$. So the probability of exactly three rolls of 3 in a sequence of six independent rolls is $\binom{6}{3}\left(\frac{1}{4}\right)^{3}\left(\frac{3}{4}\right)^{3}$.
(b) What is the probability that the first roll is 1 , given that exactly two of the six rolls have result of 1 ? The probability of obtaining a 1 on a single roll is $1 / 2$, and the probability of obtaining a 2 or 3 on a single roll is also $1 / 2$. For the purposes of solving this problem we treat obtaining a 2 or 3 as an equivalent result. We know that there are $\binom{6}{2}$ ways of rolling exactly two 1 's. Of these $\binom{6}{2}$ ways, exactly $\binom{5}{1}=5$ ways result in a 1 in the first roll, since we can place the remaining 1 in any of the five remaining rolls. The rest of the rolls must be either 2 or 3 . Thus, the probability that the first roll is a 1 given exactly two rolls had an outcome of 1 is $\frac{5}{\binom{6}{2}}$.
(c) We are now told that exactly three of the rolls resulted in 1 and exactly three resulted in 2 . What is the probability of the sequence 121212 ? We want to find

$$
\mathbf{P}(121212 \mid \text { exactly three 1's and three } 2 \text { 's })=\frac{\mathbf{P}(121212)}{\mathbf{P}(\text { exactly } 3 \text { ones and } 3 \text { twos })} .
$$

Any particular sequence of three 1's and three 2's will have the same probability: $(1 / 2)^{3}(1 / 4)^{3}$. There are $\binom{6}{3}$ possible rolls with exactly three 1's and three 2's. Therefore,

$$
\mathbf{P}(121212 \mid \text { exactly three 1's and three } 2 \text { 's })=\frac{1}{\binom{6}{3}} \text {. }
$$

(d) Conditioned on the event that at least one roll resulted in 3, find the conditional PMF of the number of 3 's. Let A be the event that at least one roll results in a 3 . Then

$$
\mathbf{P}(A)=1-\mathbf{P}(\text { no rolls resulted in } 3)=1-\left(\frac{3}{4}\right)^{6}
$$

Now let K be the random variable representing the number of 3 's in the 6 rolls. The (unconditional) PMF $p_{K}(k)$ for K is given by

$$
p_{K}(k)=\binom{6}{k}\left(\frac{1}{4}\right)^{k}\left(\frac{3}{4}\right)^{6-k}
$$

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)
We find the conditional PMF $p_{k \mid A}(k \mid A)$ using the definition of conditional probability:

$$
p_{K \mid A}(k \mid A)=\frac{\mathbf{P}(\{K=k\} \cap A)}{\mathbf{P}(A)} .
$$

Thus we obtain

$$
p_{K \mid A}(k \mid A)= \begin{cases}\frac{1}{1-(3 / 4)^{6}}\binom{6}{k}\left(\frac{1}{4}\right)^{k}\left(\frac{3}{4}\right)^{6-k} & \text { if } k=1,2, \ldots, 6, \\ 0 & \text { otherwise } .\end{cases}
$$

Note that $p_{K \mid A}(0 \mid A)=0$ because the event $\{K=0\}$ and the event A are mutually exclusive. Thus the probability of their intersection, which appears in the numerator in the definition of the conditional PMF, is zero.
3. By the definition of conditional probability,

$$
\mathbf{P}(X=i \mid X+Y=n)=\frac{\mathbf{P}(\{X=i\} \cap\{X+Y=n\})}{\mathbf{P}(X+Y=n)} .
$$

The event $\{X=i\} \cap\{X+Y=n\}$ in the numerator is equivalent to $\{X=i\} \cap\{Y=n-i\}$. Combining this with the independence of X and Y,

$$
\mathbf{P}(\{X=i\} \cap\{X+Y=n\})=\mathbf{P}(\{X=i\} \cap\{Y=n-i\})=\mathbf{P}(X=i) \mathbf{P}(Y=n-i) .
$$

In the denominator, $\mathbf{P}(X+Y=n)$ can be expanded using the total probability theorem and the independence of X and Y :

$$
\begin{aligned}
\mathbf{P}(X+Y=n) & =\sum_{i=1}^{n-1} \mathbf{P}(X=i) \mathbf{P}(X+Y=n \mid X=i) \\
& =\sum_{i=1}^{n-1} \mathbf{P}(X=i) \mathbf{P}(i+Y=n \mid X=i) \\
& =\sum_{i=1}^{n-1} \mathbf{P}(X=i) \mathbf{P}(Y=n-i \mid X=i) \\
& =\sum_{i=1}^{n-1} \mathbf{P}(X=i) \mathbf{P}(Y=n-i)
\end{aligned}
$$

Note that we only get non-zero probability for $i=1, \ldots, n-1$ since X and Y are geometric random variables.
The desired result is obtained by combining the computations above and using the geometric

PMF explicitly:

$$
\begin{aligned}
\mathbf{P}(X=i \mid X+Y=n) & =\frac{\mathbf{P}(X=i) \mathbf{P}(Y=n-i)}{\sum_{i=1}^{n-1} \mathbf{P}(X=i) \mathbf{P}(Y=n-i)} \\
& =\frac{(1-p)^{i-1} p(1-p)^{n-i-1} p}{\sum_{i=1}^{n-1}(1-p)^{i-1} p(1-p)^{n-i-1} p} \\
& =\frac{(1-p)^{n}}{\sum_{i=1}^{n-1}(1-p)^{n}} \\
& =\frac{(1-p)^{n}}{(1-p)^{n} \sum_{i=1}^{n-1} 1} \\
& =\frac{1}{n-1}, \quad i=1, \ldots, n-1 .
\end{aligned}
$$

4. (a) Since $\mathbf{P}(A)>0$, we can show independence through $\mathbf{P}(B)=\mathbf{P}(B \mid A)$:

$$
\mathbf{P}(B \mid A)=\frac{\mathbf{P}(B \cap A)}{\mathbf{P}(A)}=\frac{\binom{8}{6} p^{6}(1-p)^{2} p}{\binom{8}{6} p^{6}(1-p)^{2}}=p=\mathbf{P}(B)
$$

Therefore, A and B are independent.
(b) Let C be the event " 3 heads in the first 4 tosses" and let D be the event " 2 heads in the last 3 tosses". Since there are no overlap in tosses in C and D, they are independent:

$$
\begin{aligned}
\mathbf{P}(C \cap D) & =\mathbf{P}(C) \mathbf{P}(D) \\
& =\binom{4}{3} p^{3}(1-p) \cdot\binom{3}{2} p^{2}(1-p) \\
& =12 p^{5}(1-p)^{2} .
\end{aligned}
$$

(c) Let E be the event " 4 heads in the first 7 tosses" and let F be the event " 2 nd head occurred during 4th trial". We are asked to find $\mathbf{P}(F \mid E)=\mathbf{P}(F \cap E) / \mathbf{P}(E)$. The event $F \cap E$ occurs if there is 1 head in the first 3 trials, 1 head on the 4 th trial, and 2 heads in the last 3 trials. Thus, we have

$$
\begin{aligned}
\mathbf{P}(F \mid E) & =\frac{\mathbf{P}(F \cap E)}{\mathbf{P}(E)}=\frac{\binom{3}{1} p(1-p)^{2} \cdot p \cdot\binom{3}{2} p^{2}(1-p)}{\binom{7}{4} p^{4}(1-p)^{3}} \\
& =\frac{\binom{3}{1} \cdot 1 \cdot\binom{3}{2}}{\binom{7}{4}}=\frac{9}{35} .
\end{aligned}
$$

Alternatively, we can solve this by counting. We are given that 4 heads occurred in the first 7 tosses. Each sequence of 7 trials with 4 heads is equally probable, the discrete uniform

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science 6.041/6.431: Probabilistic Systems Analysis

probability law can be used here. There are $\binom{7}{4}$ outcomes in E. For the event $E \cap F$, there are $\binom{3}{1}$ ways to arrange 1 head in the first 3 trials, 1 way to arrange the 2 nd head in the 4 th trial and $\binom{3}{2}$ ways to arrange 2 heads in the first 3 trials. Therefore,

$$
\mathbf{P}(F \mid E)=\frac{\binom{3}{1} \cdot 1 \cdot\binom{3}{2}}{\binom{7}{4}}=\frac{9}{35} .
$$

(d) Let G be the event " 5 heads in the first 8 tosses" and let H be the event " 3 heads in the last 5 tosses". These two events are not independent as there is some overlap in the tosses (the 6 th, 7 th, and 8 th tosses). To compute the probability of interest, we carefully count all the disjoint, possible outcomes in the set $G \cap H$ by conditioning on the number of heads in the 6 th, 7 th, and the 8th tosses. We have

$$
\begin{aligned}
\mathbf{P}(G \cap H)= & \mathbf{P}(G \cap H \mid 1 \text { head in tosses 6-8)P} \mathbf{P}(1 \text { head in tosses 6-8) } \\
& +\mathbf{P}(G \cap H \mid 2 \text { heads in tosses } 6-8) \mathbf{P}(2 \text { heads in tosses 6-8) } \\
& +\mathbf{P}(G \cap H \mid 3 \text { heads in tosses 6-8)P} \mathbf{P}(3 \text { heads in tosses 6-8) } \\
= & \binom{5}{4} p^{4}(1-p) \cdot p^{2} \cdot\binom{3}{1} p(1-p)^{2} \\
& +\binom{5}{3} p^{3}(1-p)^{2} \cdot\binom{2}{1} p(1-p) \cdot\binom{3}{2} p^{2}(1-p) \\
& +\binom{5}{2} p^{2}(1-p)^{3} \cdot(1-p)^{2} \cdot p^{3} . \\
= & 15 p^{7}(1-p)^{3}+60 p^{6}(1-p)^{4}+10 p^{5}(1-p)^{5} .
\end{aligned}
$$

5. Let I_{k} be the reward paid at time k. We have

$$
\mathbf{E}\left[I_{k}\right]=\mathbf{P}\left(I_{k}=1\right)=\mathbf{P}(\mathrm{T} \text { at time } k \text { and } \mathrm{H} \text { at time } k-1)=p(1-p) .
$$

Computing $\mathbf{E}[R]$ is immediate because

$$
\mathbf{E}[R]=\mathbf{E}\left[\sum_{k=1}^{n} I_{k}\right]=\sum_{k=1}^{n} \mathbf{E}\left[I_{k}\right]=n p(1-p) .
$$

The variance calculation is not as easy because the $I_{k} \mathrm{~S}$ are not all independent:

$$
\begin{aligned}
\mathbf{E}\left[I_{k}^{2}\right] & =p(1-p) \\
\mathbf{E}\left[I_{k} I_{k+1}\right] & =0 \text { because rewards at times } k \text { and } k+1 \text { are inconsistent } \\
\mathbf{E}\left[I_{k} I_{k+\ell}\right] & =\mathbf{E}\left[I_{k}\right] \mathbf{E}\left[I_{k+\ell}\right]=p^{2}(1-p)^{2} \quad \text { for } \ell \geq 2
\end{aligned}
$$

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)

$$
\begin{aligned}
\mathbf{E}\left[R^{2}\right]= & \mathbf{E}\left[\left(\sum_{k=1}^{n} I_{k}\right)\left(\sum_{m=1}^{n} I_{m}\right)\right]=\sum_{k=1}^{n} \sum_{m=1}^{n} \mathbf{E}\left[I_{k} I_{m}\right] \\
= & \underbrace{n p(1-p)}+\underbrace{0} \quad+\underbrace{n \text { terms with } k=m}{ }^{n}+n-1) \text { terms with }|k-m|=1 \quad \underbrace{\left(n^{2}-3 n+2\right) p^{2}(1-p)^{2}}_{n^{2}-3 n+2 \text { terms with }|k-m|>1}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{var}(R) & =\mathbf{E}\left[R^{2}\right]-(\mathbf{E}[R])^{2} \\
& =n p(1-p)+\left(n^{2}-3 n+2\right) p^{2}(1-p)^{2}-n^{2} p^{2}(1-p)^{2} \\
& =n p(1-p)-(3 n-2) p^{2}(1-p)^{2}
\end{aligned}
$$

G1 ${ }^{\dagger}$. (a) We know that I_{A} is a random variable that maps a 1 to the real number line if ω occurs within an event A and maps a 0 to the real number line if ω occurs outside of event A. A similar argument holds for event B. Thus we have,

$$
\begin{aligned}
& I_{A}(\omega)= \begin{cases}1, & \text { with probability } \mathbf{P}(A) \\
0, & \text { with probability } 1-\mathbf{P}(A)\end{cases} \\
& I_{B}(\omega)= \begin{cases}1, & \text { with probability } \mathbf{P}(B) \\
0, & \text { with probability } 1-\mathbf{P}(B)\end{cases}
\end{aligned}
$$

If the random variables, A and B, are independent, we have $\mathbf{P}(A \cap B)=\mathbf{P}(A) \mathbf{P}(B)$. The indicator random variables, I_{A} and I_{B}, are independent if, $\mathbf{P}_{I_{A}, I_{B}}(x, y)=\mathbf{P}_{I_{A}}(x) \mathbf{P}_{I_{B}}(y)$
We know that the intersection of A and B yields.

$$
\begin{aligned}
\mathbf{P}_{I_{A}, I_{B}}(1,1) & =\mathbf{P}_{I_{A}}(1) \mathbf{P}_{I_{B}}(1) \\
& =\mathbf{P}(A) \mathbf{P}(B) \\
& =\mathbf{P}(A \cap B)
\end{aligned}
$$

We also have,

$$
\begin{aligned}
& \mathbf{P}_{I_{A}, I_{B}}(1,1)=\mathbf{P}(A \cap B)=\mathbf{P}(A) \mathbf{P}(B)=\mathbf{P}_{I_{A}}(1) \mathbf{P}_{I_{B}}(1) \\
& \mathbf{P}_{I_{A}, I_{B}}(0,1)=\mathbf{P}\left(A^{c} \cap B\right)=\mathbf{P}\left(A^{c}\right) \mathbf{P}(B)=\mathbf{P}_{I_{A}}(0) \mathbf{P}_{I_{B}}(1) \\
& \mathbf{P}_{I_{A}, I_{B}}(1,0)=\mathbf{P}\left(A \cap B^{c}\right)=\mathbf{P}(A) \mathbf{P}\left(B^{c}\right)=\mathbf{P}_{I_{A}}(1) \mathbf{P}_{I_{B}}(0) \\
& \mathbf{P}_{I_{A}, I_{B}}(0,0)=\mathbf{P}\left(A^{c} \cap B^{c}\right)=\mathbf{P}\left(A^{c}\right) \mathbf{P}\left(B^{c}\right)=\mathbf{P}_{I_{A}}(0) \mathbf{P}_{I_{B}}(0)
\end{aligned}
$$

(b) If $X=I_{A}$, we know that

$$
\mathbf{E}[X]=\mathbf{E}\left[I_{A}\right]=1 \cdot \mathbf{P}(A)+0 \cdot(1-\mathbf{P}(A))=\mathbf{P}(A)
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.041SC Probabilistic Systems Analysis and Applied Probability
 Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

