# Massachusetts Institute of Technology <br> Department of Electrical Engineering \& Computer Science <br> 6.041/6.431: Probabilistic Systems Analysis 

(Fall 2010)

## Recitation 6 Solutions

September 28, 2010

1. (a) The first part can be completed without reference to anything other than the die roll:

(b) When $N=0$, the coin is not flipped at all, so $K=0$. When $N=n$ for $n \in\{1,2,3\}$, the coin is flipped $n$ times, resulting in $K$ with a distribution that is conditionally binomial. The binomial probabilities are all multiplied by $1 / 4$ because $p_{N}(n)=1 / 4$ for $n \in\{0,1,2,3\}$. The joint PMF $p_{N, K}(n, k)$ thus takes the following values and is zero otherwise:

|  | $k=0$ | $k=1$ | $k=2$ | $k=3$ |
| :---: | :---: | :---: | :---: | :---: |
| $n=0$ | $1 / 4$ | 0 | 0 | 0 |
| $n=1$ | $1 / 8$ | $1 / 8$ | 0 | 0 |
| $n=2$ | $1 / 16$ | $1 / 8$ | $1 / 16$ | 0 |
| $n=3$ | $1 / 32$ | $3 / 32$ | $3 / 32$ | $1 / 32$ |

(c) Conditional on $N=2, K$ is a binomial random variable. So we immediately see that

$$
p_{K \mid N}(k \mid 2)=\left\{\begin{aligned}
1 / 4, & \text { if } k=0 \\
1 / 2, & \text { if } k=1 \\
1 / 4, & \text { if } k=2 \\
0, & \text { otherwise. }
\end{aligned}\right.
$$

This is a normalized row of the table in the previous part.

(d) To get $K=2$ heads, there must have been at least 3 coin tosses, so only $N=3$ and $N=4$ have positive conditional probability given $K=2$.

$$
p_{N \mid K}(2 \mid 2)=\frac{\mathbf{P}(\{N=2\} \cap\{K=2\})}{\mathbf{P}(\{K=2\})}=\frac{1 / 16}{1 / 16+1 / 32+1 / 32+1 / 32}=2 / 5 .
$$

Similarly, $p_{N \mid K}(3 \mid 2)=3 / 5$.

# Massachusetts Institute of Technology 

Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

2. (a) $x=0$ maximizes $\mathbf{E}[Y \mid X=x]$ since

$$
\mathbf{E}[Y \mid X=x]= \begin{cases}2, & \text { if } x=0 \\ 3 / 2, & \text { if } x=2, \\ 3 / 2, & \text { if } x=4 \\ \text { undefined, }, & \text { otherwise }\end{cases}
$$

(b) $y=3$ maximizes $\operatorname{var}(X \mid Y=y)$ since

$$
\operatorname{var}(X \mid Y=y)= \begin{cases}0, & \text { if } y=0 \\ 8 / 3, & \text { if } y=1 \\ 1, & \text { if } y=2 \\ 4, & \text { if } y=3 \\ \text { undefined, } & \text { otherwise }\end{cases}
$$

(c)

(d) By traversing the points top to bottom and left to right, we obtain

$$
\mathbf{E}[X Y]=\frac{1}{8}(0 \cdot 3+4 \cdot 3+2 \cdot 2+4 \cdot 2+0 \cdot 1+2 \cdot 1+4 \cdot 1+4 \cdot 0)=\frac{15}{4} .
$$

Conditioning on $A$ removes the point masses at $(0,1)$ and $(0,3)$. The conditional probability of each of the remaining point masses is thus $1 / 6$, and

$$
\mathbf{E}[X Y \mid A]=\frac{1}{6}(4 \cdot 3+2 \cdot 2+4 \cdot 2+2 \cdot 1+4 \cdot 1+4 \cdot 0)=5 .
$$

3. See the textbook, Example 2.17, pages 105-106.

MIT OpenCourseWare
http://ocw.mit.edu

### 6.041SC Probabilistic Systems Analysis and Applied Probability

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

