Massachusetts Institute of Technology

Department of Electrical Engineering & Computer Science

6.041/6.431: Probabilistic Systems Analysis (Fall 2010)

Tutorial 3 September 30/October 1, 2010

- 1. Let X and Y be independent random variables. Random variable X has mean μ_X and variance σ_X^2 , and random variable Y has mean μ_Y and variance σ_Y^2 . Let Z = 2X 3Y. Find the mean and variance of Z in terms of the means and variances of X and Y.
- 2. Problem 2.40, page 133 in the text.

 A particular professor is known for his arbitrary grading policies. Each paper receives a grade from the set {A, A-, B+, B, B-, C+}, with equal probability, independently of other papers. How many papers do you expect to hand in before you receive each possible grade at least once?
- 3. The joint PMF of the random variables X and Y is given by the following table:

y = 3	c	c	2c
y = 2	2c	0	4c
y = 1	3c	\overline{c}	6c
	x = 1	x = 2	x = 3

- (a) Find the value of the constant c.
- (b) Find $p_Y(2)$.
- (c) Consider the random variable $Z = YX^2$. Find $\mathbf{E}[Z \mid Y = 2]$.
- (d) Conditioned on the event that $X \neq 2$, are X and Y independent? Give a one-line justification.
- (e) Find the conditional variance of Y given that X = 2.

MIT OpenCourseWare http://ocw.mit.edu

6.041SC Probabilistic Systems Analysis and Applied Probability Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.