Quiz I Review
 Probabilistic Systems Analysis
 6.041SC

Massachusetts Institute of Technology

Quiz Information

- Content: Chapters 1-2, Lecture 1-7, Recitations 1-7, Psets 1-4, Tutorials 1-3

A Probabilistic Model:

- Sample Space: The set of all possible outcomes of an experiment.
- Probability Law: An assignment of a nonnegative number $\mathbf{P}(\mathrm{E})$ to each event E .

Probability Law

Probability Axioms

Given a sample space Ω :

1. Nonnegativity: $\mathbf{P}(A) \geq 0$ for each event A
2. Additivity: If A and B are disjoint events, then

$$
\mathbf{P}(A \cup B)=P(A)+P(B)
$$

If A_{1}, A_{2}, \ldots, is a sequence of disjoint events,

$$
\mathbf{P}\left(A_{1} \cup A_{2} \cup \cdots\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots
$$

3. Normalization $\mathbf{P}(\Omega)=1$

Properties of Probability Laws

Given events A, B and C :

1. If $A \subset B$, then $\mathbf{P}(A) \leq \mathbf{P}(B)$
2. $\mathbf{P}(A \cup B)=\mathbf{P}(A)+\mathbf{P}(B)-\mathbf{P}(A \cap B)$
3. $\mathbf{P}(A \cup B) \leq \mathbf{P}(A)+\mathbf{P}(B)$
4. $\mathbf{P}(A \cup B \cup C)=\mathbf{P}(A)+\mathbf{P}\left(A^{c} \cap B\right)+\mathbf{P}\left(A^{c} \cap B^{c} \cap C\right)$

Discrete Models

- Discrete Probability Law: If Ω is finite, then each event $A \subseteq \Omega$ can be expressed as

$$
A=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\} \quad s_{i} \in \Omega
$$

Therefore the probability of the event A is given as

$$
\mathbf{P}(A)=\mathbf{P}\left(s_{1}\right)+\mathbf{P}\left(s_{2}\right)+\cdots+\mathbf{P}\left(s_{n}\right)
$$

- Discrete Uniform Probability Law: If all outcomes are equally likely,

$$
\mathbf{P}(A)=\frac{|A|}{|\Omega|}
$$

Conditional Probability

- Given an event B with $\mathbf{P}(B)>0$, the conditional probability of an event $A \subseteq \Omega$ is given as

$$
\mathbf{P}(A \mid B)=\frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}
$$

- $\mathbf{P}(A \mid B)$ is a valid probability law on Ω, satisfying 1. $\mathbf{P}(A \mid B) \geq 0$

2. $\mathbf{P}(\Omega \mid B)=1$
3. $\mathbf{P}\left(A_{1} \cup A_{2} \cup \cdots \mid B\right)=\mathbf{P}\left(A_{1} \mid B\right)+\mathbf{P}\left(A_{2} \mid B\right)+\cdots$, where $\left\{A_{i}\right\}_{i}$ is a set of disjoint events

- $\mathbf{P}(A \mid B)$ can also be viewed as a probability law on the restricted universe B.

Multiplication Rule

- Let A_{1}, \ldots, A_{n} be a set of events such that

$$
\mathbf{P}\left(\bigcap_{i=1}^{n-1} A_{i}\right)>0
$$

Then the joint probability of all events is

$$
\mathbf{P}\left(\bigcap_{i=1}^{n} A_{i}\right)=\mathbf{P}\left(A_{1}\right) \mathbf{P}\left(A_{2} \mid A_{1}\right) \mathbf{P}\left(A_{3} \mid A_{1} \cap A_{2}\right) \cdots \mathbf{P}\left(A_{n} \mid \bigcap_{i=1}^{n-1} A_{i}\right)
$$

Total Probability Theorem

Let A_{1}, \ldots, A_{n} be disjoint events that partition Ω. If $\mathbf{P}\left(A_{i}\right)>0$ for each i, then for any event B,

$$
\mathbf{P}(B)=\sum_{i=1}^{n} \mathbf{P}\left(B \cap A_{i}\right)=\sum_{i=1}^{n} \mathbf{P}\left(B \mid A_{i}\right) \mathbf{P}\left(A_{i}\right)
$$

Bayes Rule

Given a finite partition A_{1}, \ldots, A_{n} of Ω with $\mathbf{P}\left(A_{i}\right)>0$, then for each event B with $\mathbf{P}(B)>0$

$$
\mathbf{P}\left(A_{i} \mid B\right)=\frac{\mathbf{P}\left(B \mid A_{i}\right) \mathbf{P}\left(A_{i}\right)}{\mathbf{P}(B)}=\frac{\mathbf{P}\left(B \mid A_{i}\right) \mathbf{P}\left(A_{i}\right)}{\sum_{i=1}^{n} \mathbf{P}\left(B \mid A_{i}\right) \mathbf{P}\left(A_{i}\right)}
$$

Independence of Events

- Events A and B are independent if and only if

$$
\mathbf{P}(A \cap B)=\mathbf{P}(A) \mathbf{P}(B)
$$

or

$$
\mathbf{P}(A \mid B)=\mathbf{P}(A) \quad \text { if } \mathbf{P}(B)>0
$$

- Events A and B are conditionally independent given an event C if and only if

$$
\mathbf{P}(A \cap B \mid C)=\mathbf{P}(A \mid C) \mathbf{P}(B \mid C)
$$

or

$$
\mathbf{P}(A \mid B \cap C)=\mathbf{P}(A \mid C) \quad \text { if } \mathbf{P}(B \cap C)>0
$$

- Independence \nLeftarrow Conditional Independence.

Independence of a Set of Events

- The events A_{1}, \ldots, A_{n} are pairwise independent if for each $i \neq j$

$$
\mathbf{P}\left(A_{i} \cap A_{j}\right)=\mathbf{P}\left(A_{i}\right) \mathbf{P}\left(A_{j}\right)
$$

- The events A_{1}, \ldots, A_{n} are independent if

$$
\mathbf{P}\left(\bigcap_{i \in S} A_{i}\right)=\prod_{i \in S} \mathbf{P}\left(A_{i}\right) \quad \forall S \subseteq\{1,2, \ldots, n\}
$$

- Pairwise independence \nRightarrow independence, but independence \Rightarrow pairwise independence.

Counting Techniques

- Basic Counting Principle: For an m-stage process with n_{i} choices at stage i,

$$
\# \text { Choices }=n_{1} n_{2} \cdots n_{m}
$$

- Permutations: k-length sequences drawn from n distinct items without replacement (order is important):

$$
\# \text { Sequences }=n(n-1) \cdots(n-k+1)=\frac{n!}{(n-k)!}
$$

- Combinations: Sets with k elements drawn from n distinct items (order within sets is not important):

$$
\# \text { Sets }=\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Counting Techniques-contd

- Partitions: The number of ways to partition an n-element set into r disjoint subsets, with n_{k} elements in the $k^{t h}$ subset:

$$
\begin{aligned}
\binom{n}{n_{1}, n_{2}, \ldots, n_{r}} & =\binom{n}{n_{1}}\binom{n-n_{1}}{n_{2}} \cdots\binom{n-n_{1}-\cdots-n_{r}-1}{n_{r}} \\
& =\frac{n!}{n_{1}!n_{2}!, \cdots, n_{r}!}
\end{aligned}
$$

where

$$
\begin{aligned}
\binom{n}{k} & =\frac{n!}{k!(n-k)!} \\
\sum_{i=1}^{r} n_{i} & =n
\end{aligned}
$$

Discrete Random Variables

- A random variable is a real-valued function defined on the sample space:

$$
X: \Omega \rightarrow R
$$

- The notation $\{X=x\}$ denotes an event:

$$
\{X=x\}=\{\omega \in \Omega \mid X(\omega)=x\} \subseteq \Omega
$$

- The probability mass function (PMF) for the random variable X assigns a probability to each event $\{X=x\}$:

$$
p_{X}(x)=\mathbf{P}(\{X=x\})=\mathbf{P}(\{\omega \in \Omega \mid X(\omega)=x\})
$$

PMF Properties

- Let X be a random variable and S a countable subset of the real line
- The axioms of probability hold:

$$
\begin{aligned}
& \text { 1. } p_{x}(x) \geq 0 \\
& \text { 2. } \mathbf{P}(X \in S)=\sum_{x \in S} p_{x}(x) \\
& \text { 3. } \sum_{x} p_{x}(x)=1
\end{aligned}
$$

- If g is a real-valued function, then $Y=g(X)$ is a random variable:

$$
\omega \xrightarrow{X} X(\omega) \xrightarrow{g} g(X(\omega))=Y(\omega)
$$

with PMF

$$
p_{Y}(y)=\sum_{x \mid g(x)=y} P_{X}(x)
$$

Expectation

Given a random variable X with PMF $p_{X}(x)$:

- $\mathbf{E}[X]=\sum_{x} x p_{X}(x)$
- Given a derived random variable $Y=g(X)$:

$$
\begin{aligned}
\mathbf{E}[g(X)] & =\sum_{x} g(x) p_{X}(x)=\sum_{y} y p_{Y}(y)=E[Y] \\
\mathbf{E}\left[X^{n}\right] & =\sum_{x} x^{n} p_{X}(x)
\end{aligned}
$$

- Linearity of Expectation: $\mathbf{E}[a X+b]=a \mathbf{E}[X]+b$.

Variance

The expected value of a derived random variable $g(X)$ is

$$
\mathrm{E}[g(X)]=\sum_{x} g(x) p_{X}(x)
$$

The variance of X is calculated as

- $\operatorname{var}(X)=\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right]=\sum_{x}(x-\mathbf{E}[X])^{2} p_{X}(x)$
- $\operatorname{var}(X)=\mathbf{E}\left[X^{2}\right]-\mathbf{E}[X]^{2}$
- $\operatorname{var}(a X+b)=a^{2} \operatorname{var}(X)$

Note that $\operatorname{var}(x) \geq 0$

Multiple Random Variables

Let X and Y denote random variables defined on a sample space Ω.

- The joint PMF of X and Y is denoted by

$$
p_{X, Y}(x, y)=\mathbf{P}(\{X=x\} \cap\{Y=y\})
$$

- The marginal PMFs of X and Y are given respectively as

$$
\begin{aligned}
& p_{X}(x)=\sum_{y} p_{X, Y}(x, y) \\
& p_{Y}(y)=\sum_{x} p_{X, Y}(x, y)
\end{aligned}
$$

Functions of Multiple Random Variables

 Let $Z=g(X, Y)$ be a function of two random variables- PMF:

$$
p_{Z}(z)=\sum_{(x, y) \mid g(x, y)=z} p_{X, Y}(x, y)
$$

- Expectation:

$$
\mathbf{E}[Z]=\sum_{x, y} g(x, y) p_{X, Y}(x, y)
$$

- Linearity: Suppose $g(X, Y)=a X+b Y+c$.

$$
\mathbf{E}[g(X, Y)]=a \mathbf{E}[X]+b \mathbf{E}[Y]+c
$$

Conditioned Random Variables

- Conditioning X on an event A with $\mathbf{P}(A)>0$ results in the PMF:

$$
p_{X \mid A}(x)=\mathbf{P}(\{X=x\} \mid A)=\frac{\mathbf{P}(\{X=x\} \cap A)}{\mathbf{P}(A)}
$$

- Conditioning X on the event $Y=y$ with $\mathbf{P}_{Y}(y)>0$ results in the PMF:
$p_{X \mid Y}(x \mid y)=\frac{\mathbf{P}(\{X=x\} \cap\{Y=y\})}{\mathbf{P}(\{Y=y\})}=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}$

Conditioned RV - contd

- Multiplication Rule:

$$
p_{X, Y}(x, y)=p_{X \mid Y}(x \mid y) p_{Y}(y)
$$

- Total Probability Theorem:

$$
\begin{aligned}
& p_{X}(x)=\sum_{i=1}^{n} \mathbf{P}\left(A_{i}\right) p_{X \mid A_{i}}(x) \\
& p_{X}(x)=\sum_{y} p_{X \mid Y}(x \mid y) p_{Y}(y)
\end{aligned}
$$

Conditional Expectation

Let X and Y be random variables on a sample space Ω.

- Given an event A with $\mathbf{P}(A)>0$

$$
\mathbf{E}[X \mid A]=\sum_{x} x p_{X \mid A}(x)
$$

- If $P_{Y}(y)>0$, then

$$
\mathbf{E}[X \mid\{Y=y\}]=\sum_{x} x p_{X \mid Y}(x \mid y)
$$

- Total Expectation Theorem: Let A_{1}, \ldots, A_{n} be a partition of Ω. If $\mathbf{P}\left(A_{i}\right)>0 \forall i$, then

$$
\mathbf{E}[X]=\sum_{i=1}^{n} \mathbf{P}\left(A_{i}\right) \mathbf{E}\left[X \mid A_{i}\right]
$$

Independence

Let X and Y be random variables defined on Ω and let A be an event with $\mathbf{P}(A)>0$.

- X is independent of A if either of the following hold:

$$
\begin{aligned}
& p_{X \mid A}(x)=p_{X}(x) \forall x \\
& p_{X, A}(x)=p_{X}(x) \mathbf{P}(A) \forall x
\end{aligned}
$$

- X and Y are independent if either of the following hold:

$$
\begin{aligned}
p_{X \mid Y}(x \mid y) & =p_{X}(x) \forall x \forall y \\
p_{X, Y}(x, y) & =p_{X}(x) p_{Y}(y) \forall x \forall y
\end{aligned}
$$

Independence

If X and Y are independent, then the following hold:

- If g and h are real-valued functions, then $g(X)$ and $h(Y)$ are independent.
- $\mathbf{E}[X Y]=\mathbf{E}[X] \mathbf{E}[Y]$ (inverse is not true)
- $\operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)$

Given independent random variables X_{1}, \ldots, X_{n},
$\operatorname{var}\left(X_{1}+X_{2}+\cdots+X_{n}\right)=\operatorname{var}\left(X_{1}\right)+\operatorname{var}\left(X_{2}\right)+\cdots+\operatorname{var}\left(X_{n}\right)$

Some Discrete Distributions

	X	$p_{X}(k)$	E [X]	$\operatorname{var}(X)$
Bernoulli	$\begin{cases}1 & \text { success } \\ 0 & \text { failure }\end{cases}$	$\begin{cases}p & k=1 \\ 1-p & k=0\end{cases}$	p	$p(1-p)$
Binomial	Number of successes in n Bernoulli trials	$\begin{aligned} & \left(\begin{array}{l} n \\ k \\ k \end{array} p^{k}(1-p)^{n-k}\right. \\ & k=0.1 \end{aligned}$	np	$n p(1-p)$
Geometric	Number of trials until first success	$\begin{aligned} & (1-p)^{k-1} p \\ & k=1,2, \ldots \end{aligned}$	$\frac{1}{p}$	$\frac{1-p}{p^{2}}$
Uniform	An integer in the interval $[\mathrm{a}, \mathrm{b}]$	$\begin{cases}\frac{1}{\text { b }} \text { (} & k=a, \ldots, b \\ 0-2+1 & \text { otherwise }\end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)(b-a+2)}{12}$

MIT OpenCourseWare
http://ocw.mit.edu

6.041SC Probabilistic Systems Analysis and Applied Probability

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

