Massachusetts Institute of Technology

Department of Electrical Engineering & Computer Science

6.041/6.431: Probabilistic Systems Analysis (Fall 2010)

Recitation 11 October 14, 2010

1. Let X be a discrete random variable that takes the values 1 with probability p and -1 with probability 1-p. Let Y be a continuous random variable independent of X with the Laplacian (two-sided exponential) distribution

$$f_Y(y) = \frac{1}{2}\lambda e^{-\lambda|y|},$$

and let Z = X + Y. Find $\mathbf{P}(X = 1 \mid Z = z)$. Check that the expression obtained makes sense for $p \to 0^+$, $p \to 1^-$, $\lambda \to 0^+$, and $\lambda \to \infty$.

2. Let Q be a continuous random variable with PDF

$$f_Q(q) = \begin{cases} 6q(1-q), & \text{if } 0 \le q \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

This Q represents the probability of success of a Bernoulli random variable X, i.e.,

$$\mathbf{P}(X=1\mid Q=q)\ =\ q.$$

Find $f_{Q|X}(q|x)$ for $x \in \{0,1\}$ and all q.

3. Let X have the normal distribution with mean 0 and variance 1, i.e.,

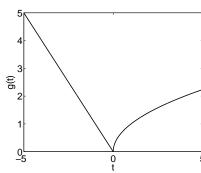
$$f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}.$$

Also, let Y = g(X) where

$$g(t) \ = \ \left\{ \begin{array}{ll} -t, & \text{for } t \leq 0; \\ \sqrt{t}, & \text{for } t > 0, \end{array} \right.$$

as shown to the right.

Find the probability density function of Y.



6.041SC Probabilistic Systems Analysis and Applied Probability Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.