Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)

Tutorial 5: Solutions

1. (a) Let A be the event that the machine is functional. Conditioned on the random variable Q taking on a particular value $q, \mathbf{P}(A \mid Q=q)=q$. Using the continuous form of the total probability theorem, the probability of event A is given by:

$$
\begin{aligned}
\mathbf{P}(A) & =\int_{0}^{1} \mathbf{P}(A \mid Q=q) f_{Q}(q) d q \\
& =\int_{0}^{1} q d q \\
& =1 / 2
\end{aligned}
$$

(b) Let B be the event that the machine is functional on m out of the last n days. Conditioned on random variable Q taking on value q (a probability q of being functional) the probability of event B is binomial with n trials, m successes, and a probability q of success in each trial. Again using the total probability theorem, the probability of event B is given by:

$$
\begin{aligned}
\mathbf{P}(B) & =\int_{0}^{1} \mathbf{P}(B \mid Q=q) f_{Q}(q) d q \\
& =\int_{0}^{1}\binom{n}{m} q^{m}(1-q)^{n-m} f_{Q}(q) d q \\
& =\binom{n}{m} \frac{m!(n-m)!}{(n+1)!}
\end{aligned}
$$

We then find the distribution on Q conditioned on event B using Bayes rule:

$$
\begin{aligned}
f_{Q \mid B}(q) & =\frac{\mathbf{P}(B \mid Q=q) f_{Q}(q)}{\mathbf{P}(B)} \\
& =\frac{q^{m}(1-q)^{n-m}}{\frac{m!(n-m)!}{(n+1)!}} \quad 0 \leq q \leq 1, \quad n \geq m
\end{aligned}
$$

2. Since $Y=|X|$ you can visualize the PDF for any given y as

$$
f_{Y}(y)= \begin{cases}f_{X}(y)+f_{X}(-y), & \text { if } y \geq 0 \\ 0, & \text { if } y<0\end{cases}
$$

Also note that since $Y=|X|, Y \geq 0$.
(a) $f_{X}(x)= \begin{cases}\frac{1}{3}, & \text { if }-2<x \leq 1, \\ 0, & \text { otherwise }\end{cases}$

So, $f_{X}(x)$ for $-1 \leq x \leq 0$ gets added to $f_{X}(x)$ for $0 \leq x \leq 1$:

$$
f_{Y}(y)= \begin{cases}2 / 3, & \text { if } 0 \leq y \leq 1 \\ 1 / 3, & \text { if } 1<y \leq 2 \\ 0, & \text { otherwise }\end{cases}
$$

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis
 (Fall 2010)

(b) Here we are told $X>0$. So there are no negative values of X that need to be considered. Thus,

$$
f_{Y}(y)=f_{X}(y)= \begin{cases}2 e^{-2 y}, & \text { if } y \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

(c) As explained in the beginning, $f_{Y}(y)=f_{X}(y)+f_{X}(-y)$.
3. We want to compute the CDF of the ambulance's travel time $T, \mathbf{P}(T \leq t)=\mathbf{P}(|X-Y| \leq v t)$, where X and Y are the locations of the ambulance and accident (uniform over $[0, l])$. Since X and Y are independent, we know:

$$
\begin{gathered}
f_{X, Y}(x, y)=\left\{\begin{array}{cl}
\frac{1}{l^{2}} & , \text { if } 0 \leq x, y \leq l \\
0 & , \\
\text { otherwise }
\end{array}\right. \\
\begin{aligned}
\mathbf{P}(T \leq t) & =\mathbf{P}(|X-Y| \leq v t)=\mathbf{P}(-v t \leq Y-X \leq v t) \\
= & \mathbf{P}(X-v t \leq Y \leq X+v t)
\end{aligned}
\end{gathered}
$$

We can see that $\mathbf{P}(X-v t \leq Y \leq X+v t)$ corresponds to the integral of the joint density of X and Y over the shaded region in the figure below:

Therefore, because the joint density is uniform over the entire region, we have:

$$
F_{T}(t)=\left(1 / l^{2}\right) \times(\text { Shaded area })= \begin{cases}0 & \text { if } t<0 \\ \frac{2 v t}{l}-\frac{(v t)^{2}}{l^{2}} & , \text { if } 0 \leq t<\frac{l}{v} \\ 1 & \text { if } t \geq \frac{l}{v}\end{cases}
$$

By differentiating the CDF, we find the density of T :

$$
f_{T}(t)=\left\{\begin{array}{ll}
\frac{2 v}{l}-\frac{2 v^{2} t}{l^{2}} & , \text { if } 0 \leq t \leq \frac{l}{v} \\
0 & , \text { otherwise }
\end{array} .\right.
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.041SC Probabilistic Systems Analysis and Applied Probability
 Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

