Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)

Recitation 12

October 19, 2010

1. Show $\rho(a X+b, Y)=\rho(X, Y)$.
2. Romeo and Juliet have a date at a given time, and each, independently, will be late by amounts of time, X and Y, respectively, that are exponentially distributed with parameter λ.
(a) Find the PDF of $Z=X-Y$ by first finding the CDF and then differentiating.
(b) Find the PDF of Z by using the total probability theorem.
3. Problem 4.16, page 248 in text.

Let X and Y be independent standard normal random variables. The pair (X, Y) can be described in polar coordinates in terms of random variables $R \geq 0$ and $\Theta \in[0,2 \pi]$, so that

$$
X=R \cos \Theta, \quad Y=R \sin \Theta
$$

Show that R and Θ are independent (i.e. show $f_{R, \Theta}(r, \theta)=f_{R}(r) f_{\Theta}(\theta)$).
(a) Find $f_{R}(r)$.
(b) Find $f_{\Theta}(\theta)$.
(c) Find $f_{R, \Theta}(r, \theta)$.
4. Problem 4.20, page 250 in text. Schwarz inequality. Show that for any random variables X and Y, we have

$$
(\mathbf{E}[X Y])^{2} \leq \mathbf{E}\left[X^{2}\right] \mathbf{E}\left[Y^{2}\right] .
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.041SC Probabilistic Systems Analysis and Applied Probability

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

