Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041SC Probabilistic Systems Analysis and Applied Probability
 Lecture 12 Bonus Video Solution

Problem 27.* We toss n times a biased coin whose probability of heads, denoted by q, is the value of a random variable Q with given mean μ and positive variance σ^{2}. Let X_{i} be a Bernoulli random variable that models the outcome of the i th toss (i.e., $X_{i}=1$ if the i th toss is a head). We assume that X_{1}, \ldots, X_{n} are conditionally independent, given $Q=q$. Let X be the number of heads obtained in the n tosses.
(a) Use the law of iterated expectations to find $\mathbf{E}\left[X_{i}\right]$ and $\mathbf{E}[X]$.
(b) Find $\operatorname{cov}\left(X_{i}, X_{j}\right)$. Are X_{1}, \ldots, X_{n} independent?
(c) Use the law of total variance to find $\operatorname{var}(X)$. Verify your answer using the covariance result of part (b).
Solution. (a) We have, from the law of iterated expectations and the fact $\mathbf{E}\left[X_{i} \mid Q\right]=Q$,

$$
\mathbf{E}\left[X_{i}\right]=\mathbf{E}\left[\mathbf{E}\left[X_{i} \mid Q\right]\right]=\mathbf{E}[Q]=\mu .
$$

Since $X=X_{1}+\cdots+X_{n}$, it follows that

$$
\mathbf{E}[X]=\mathbf{E}\left[X_{1}\right]+\cdots+\mathbf{E}\left[X_{n}\right]=n \mu .
$$

(b) We have, for $i=j$, using the conditional independence assumption,

$$
/ \quad \mathbf{E}\left[X_{i} X_{j} \mid Q\right]=\mathbf{E}\left[X_{i} \mid Q\right] \mathbf{E}\left[X_{j} \mid Q\right]=Q^{2},
$$

and

$$
\mathbf{E}\left[X_{i} X_{j}\right]=\mathbf{E}\left[\mathbf{E}\left[X_{i} X_{j} \mid Q\right]\right]=\mathbf{E}\left[Q^{2}\right] .
$$

Thus,

$$
\operatorname{cov}\left(X_{i}, X_{j}\right)=\mathbf{E}\left[X_{i} X_{j}\right]-\mathbf{E}\left[X_{i}\right] \mathbf{E}\left[X_{j}\right]=\mathbf{E}\left[Q^{2}\right]-\mu^{2}=\sigma^{2}
$$

Since $\operatorname{cov}\left(X_{i}, X_{j}\right)>0, X_{1}, \ldots, X_{n}$ are not independent.
Also, for $i=j$, using the observation that $X_{i}^{2}=X_{i}$,

$$
\begin{aligned}
\operatorname{var}\left(X_{i}\right) & =\mathbf{E}\left[X_{i}^{2}\right]-\left(\mathbf{E}\left[X_{i}\right]\right)^{2} \\
& =\mathbf{E}\left[X_{i}\right]-\left(\mathbf{E}\left[X_{i}\right]\right)^{2} \\
& =\mu-\mu^{2} .
\end{aligned}
$$

(c) Using the law of total variance, and the conditional independence of X_{1}, \ldots, X_{n}, we have

$$
\begin{aligned}
\operatorname{var}(X) & =\mathbf{E} \operatorname{var}(X \mid Q)+\operatorname{var} \mathbf{E}[X \mid Q] \\
& =\mathbf{E} \operatorname{var}\left(X_{1}+\cdots+X_{n} \mid Q\right)+\operatorname{var} \mathbf{E}\left[X_{1}+\cdots+X_{n} \mid Q\right] \\
& =\mathbf{E} n Q(1-Q)+\operatorname{var}(n Q) \\
& =n \mathbf{E}\left[Q-Q^{2}\right]+n^{2} \operatorname{var}(Q) \\
& =n\left(\mu-\mu^{2}-\sigma^{2}\right)+n^{2} \sigma^{2} \\
& =n\left(\mu-\mu^{2}\right)+n(n-1) \sigma^{2} .
\end{aligned}
$$

To verify the result using the covariance formulas of part (b), we write

$$
\begin{aligned}
\operatorname{var}(X) & =\operatorname{var}\left(X_{1}+\cdots+X_{n}\right) \\
& =\sum_{i=1}^{n} \operatorname{var}\left(X_{i}\right)+\sum_{\{(i, j) \mid i \neq j\}} \operatorname{cov}\left(X_{i}, X_{j}\right) \\
& =n \operatorname{var}\left(X_{1}\right)+n(n-1) \operatorname{cov}\left(X_{1}, X_{2}\right) \\
& =n\left(\mu-\mu^{2}\right)+n(n-1) \sigma^{2} .
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.041SC Probabilistic Systems Analysis and Applied Probability Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

