Massachusetts Institute of Technology
Department of Electrical Engineering \& Computer Science
6.041SC Probabilistic Systems Analysis and Applied Probability Lecture 12 Bonus Video Problem

Problem 27.* We toss n times a biased coin whose probability of heads, denoted by q, is the value of a random variable Q with given mean μ and positive variance σ. Let X_{i} be a Bernoulli random variable that models the outcome of the i th toss (i.e., $X_{i}=1$ if the i th toss is a head). We assume that X_{1}, \ldots, X_{n} are conditionally independent, given $Q=q$. Let X be the number of heads obtained in the n tosses.
(a) Use the law of iterated expectations to find $\mathbf{E}\left[X_{i}\right]$ and $\mathbf{E}[X]$.
(b) Find $\operatorname{cov}\left(X_{i}, X_{j}\right)$. Are X_{1}, \ldots, X_{n} independent?
(c) Use the law of total variance to find $\operatorname{var}(X)$. Verify your answer using the covariance result of part (b).

MIT OpenCourseWare
http://ocw.mit.edu

6.041SC Probabilistic Systems Analysis and Applied Probability Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

