Massachusetts Institute of Technology

Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

Problem Set 6: Solutions

1. Let us draw the region where $f_{X, Y}(x, y)$ is nonzero:

The joint PDF has to integrate to 1. From $\int_{x=1}^{x=2} \int_{y=0}^{y=x} a x d y d x=\frac{7}{3} a=1$, we get $a=\frac{3}{7}$.
(b) $f_{Y}(y)=\int f_{X, Y}(x, y) d y=\left\{\begin{array}{ll}\int_{1}^{2} \frac{3}{7} x d x, & \text { if } 0 \leq y \leq 1, \\ \int_{y}^{2} \frac{3}{7} x d x, & \text { if } 1<y \leq 2, \\ 0, & \text { otherwise }\end{array} \quad= \begin{cases}\frac{9}{14}, & \text { if } 0 \leq y \leq 1, \\ \frac{3}{14}\left(4-y^{2}\right), & \text { if } 1<y \leq 2, \\ 0, & \text { otherwise },\end{cases}\right.$
(c)

$$
f_{X \mid Y}\left(x \left\lvert\, \frac{3}{2}\right.\right)=\frac{f_{X, Y}\left(x, \frac{3}{2}\right)}{f_{Y}\left(\frac{3}{2}\right)}=\frac{8}{7} x, \quad \text { for } \frac{3}{2} \leq x \leq 2 \text { and } 0 \text { otherwise. }
$$

Then,

$$
\mathbf{E}\left[\frac{1}{X} \left\lvert\, Y=\frac{3}{2}\right.\right]=\int_{3 / 2}^{2} \frac{1}{x} \frac{8}{7} x d x=\frac{4}{7} .
$$

(d) We use the technique of first finding the CDF and differentiating it to get the PDF.

$$
\begin{aligned}
F_{Z}(z)= & \mathbf{P}(Z \leq z) \\
= & \mathbf{P}(Y-X \leq z) \\
= & \begin{cases}0, & \text { if } z<-2, \\
\int_{x=-z}^{x=2} \int_{y=0}^{y=x+z} \frac{3}{7} x d y d x=\frac{8}{7}+\frac{6}{7} z-\frac{1}{14} z^{3}, & \text { if }-2 \leq z \leq-1, \\
\int_{x=1}^{x=2} \int_{y=0}^{y=x+z} \frac{3}{7} x d y d x=1+\frac{9}{14} z, & \text { if }-1<z \leq 0, \\
1, & \text { if } 0<z .\end{cases} \\
& f_{Z}(z)=\frac{d}{d z} F_{Z}(z)= \begin{cases}\frac{6}{7}-\frac{3}{14} z^{2}, & \text { if }-2 \leq z \leq-1, \\
\frac{9}{14}, & \text { if }-1<z \leq 0, \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)
2. The PDF of $Z, f_{Z}(z)$, can be readily computed using the convolution integral:

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(t) f_{Y}(z-t) d t
$$

For $z \in[-1,0]$,

$$
f_{Z}(z)=\int_{-1}^{z} \frac{1}{3} \cdot \frac{3}{4}\left(1-t^{2}\right) d t=\frac{1}{4}\left(z-\frac{z^{3}}{3}+\frac{2}{3}\right)
$$

For $z \in[0,1]$,

$$
f_{Z}(z)=\int_{z-1}^{z} \frac{1}{3} \cdot \frac{3}{4}\left(1-t^{2}\right) d t=\frac{1}{4}\left(1-\frac{z^{3}}{3}+\frac{(z-1)^{3}}{3}\right)
$$

For $z \in[1,2]$,

$$
f_{Z}(z)=\int_{z-1}^{1} \frac{1}{3} \cdot \frac{3}{4}\left(1-t^{2}\right) d t+\int_{-1}^{z-2} \frac{2}{3} \cdot \frac{3}{4}\left(1-t^{2}\right) d t=\frac{1}{4}\left(z+\frac{(z-1)^{3}}{3}-\frac{2(z-2)^{3}}{3}-1\right)
$$

For $z \in[2,3]$,

$$
f_{Z}(z)=\int_{z-3}^{z-2} \frac{2}{3} \cdot \frac{3}{4}\left(1-t^{2}\right) d t=\frac{1}{6}\left(3+(z-3)^{3}-(z-2)^{3}\right)
$$

For $z \in[3,4]$,

$$
f_{Z}(z)=\int_{z-3}^{1} \frac{2}{3} \cdot \frac{3}{4}\left(1-t^{2}\right) d t=\frac{1}{6}\left(11-3 z+(z-3)^{3}\right)
$$

A sketch of $f_{Z}(z)$ is provided below.

3. (a) X_{1} and X_{2} are negatively correlated. Intuitively, a large number of tosses that result in a 1 suggests a smaller number of tosses that result in a 2 .
(b) Let A_{t} (respectively, B_{t}) be a Bernoulli random variable that is equal to 1 if and only if the t th toss resulted in 1 (respectively, 2$)$. We have $\mathbf{E}\left[A_{t} B_{t}\right]=0\left(\right.$ since $A_{t} \neq 0$ implies $\left.B_{t}=0\right)$ and

$$
\mathbf{E}\left[A_{t} B_{s}\right]=\mathbf{E}\left[A_{t}\right] \mathbf{E}\left[B_{s}\right]=\frac{1}{k} \cdot \frac{1}{k} \quad \text { for } \quad s \neq t
$$

Thus,

$$
\begin{aligned}
\mathbf{E}\left[X_{1} X_{2}\right] & =\mathbf{E}\left[\left(A_{1}+\cdots+A_{n}\right)\left(B_{1}+\cdots+B_{n}\right)\right] \\
& =n \mathbf{E}\left[A_{1}\left(B_{1}+\cdots+B_{n}\right)\right]=n(n-1) \cdot \frac{1}{k} \cdot \frac{1}{k}
\end{aligned}
$$

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)
and

$$
\begin{aligned}
\operatorname{cov}\left(X_{1}, X_{2}\right) & =\mathbf{E}\left[X_{1} X_{2}\right]-\mathbf{E}\left[X_{1}\right] E\left[X_{2}\right] \\
& =\frac{n(n-1)}{k^{2}}-\frac{n^{2}}{k^{2}}=-\frac{n}{k^{2}} .
\end{aligned}
$$

The covariance of X_{1} and X_{2} is negative as expected.
4. (a) If X takes a value x between -1 and 1 , the conditional PDF of Y is uniform between -2 and 2. If X takes a value x between 1 and 2 , the conditional PDF of Y is uniform between -1 and 1 .
Similarly, if Y takes a value y between -1 and 1 , the conditional PDF of X is uniform between -1 and 2 . If Y takes a value y between 1 and 2 , or between -2 and -1 , the conditional PDF of X is uniform between -1 and 1 .
(b) We have

$$
\mathbf{E}[X \mid Y=y]= \begin{cases}0, & \text { if }-2 \leq y \leq-1 \\ 1 / 2, & \text { if }-1<y \leq 1 \\ 0, & \text { if } 1 \leq y \leq 2\end{cases}
$$

and

$$
\operatorname{var}(X \mid Y=y)= \begin{cases}1 / 3, & \text { if }-2 \leq y \leq-1 \\ 3 / 4, & \text { if }-1<y \leq 1 \\ 1 / 3, & \text { if } 1 \leq y \leq 2\end{cases}
$$

It follows that $\mathbf{E}[X]=3 / 10$ and $\operatorname{var}(X)=193 / 300$.
(c) By symmetry, we have $\mathbf{E}[Y \mid X]=0$ and $\mathbf{E}[Y]=0$. Furthermore, $\operatorname{var}(Y \mid X=x)$ is the variance of a uniform PDF (whose range depends on x), and

$$
\operatorname{var}(Y \mid X=x)= \begin{cases}4 / 3, & \text { if }-1 \leq x \leq 1 \\ 1 / 3, & \text { if } 1<x \leq 2\end{cases}
$$

Using the law of total variance, we obtain

$$
\operatorname{var}(Y)=\mathbf{E}[\operatorname{var}(Y \mid X)]=\frac{4}{5} \cdot \frac{4}{3}+\frac{1}{5} \cdot \frac{1}{3}=17 / 15
$$

5. First let us write out the properties of all of our random variables. Let us also define K to be the number of members attending a meeting and B to be the Bernoulli random variable describing whether or not a member attends a meeting.

$$
\begin{aligned}
& \mathbf{E}[N]=\frac{1}{1-p}, \quad \operatorname{var}(N)=\frac{p}{(1-p)^{2}}, \\
& \mathbf{E}[M]=\frac{1}{\lambda}, \quad \operatorname{var}(M)=\frac{1}{\lambda^{2}}, \\
& \mathbf{E}[B]=q, \quad \operatorname{var}(B)=q(1-q) .
\end{aligned}
$$

(a) Since $K=B_{1}+B_{2}+\cdots B_{N}$,

$$
\begin{aligned}
\mathbf{E}[K] & =\mathbf{E}[N] \cdot \mathbf{E}[B]=\frac{q}{1-p}, \\
\operatorname{var}(K) & =\mathbf{E}[N] \cdot \operatorname{var}(B)+(\mathbf{E}(B))^{2} \cdot \operatorname{var}(N)=\frac{q(1-q)}{1-p}+\frac{p q^{2}}{(1-p)^{2}}
\end{aligned}
$$

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)
(b) Let G be the total money brought to the meeting. Then $G=M_{1}+M_{2}+\cdots+M_{K}$.

$$
\begin{aligned}
\mathbf{E}[G] & =\mathbf{E}[M] \cdot \mathbf{E}[K]=\frac{q}{\lambda(1-p)}, \\
\operatorname{var}(G) & =\operatorname{var}(M) \cdot \mathbf{E}[K]+(\mathbf{E}[M])^{2} \operatorname{var}(K) \\
& =\frac{q}{\lambda^{2}(1-p)}+\frac{1}{\lambda^{2}}\left(\frac{q(1-q)}{1-p}+\frac{p q^{2}}{(1-p)^{2}}\right) .
\end{aligned}
$$

G1 ${ }^{\dagger}$. (a) Let $X_{1}, X_{2}, \ldots X_{n}$ be independent, identically distributed (IID) random variables. We note that

$$
\mathbf{E}\left[X_{1}+\cdots+X_{n} \mid X_{1}+\cdots+X_{n}=x_{0}\right]=x_{0} .
$$

It follows from the linearity of expectations that

$$
\begin{aligned}
x_{0} & =\mathbf{E}\left[X_{1}+\cdots+X_{n} \mid X_{1}+\cdots+X_{n}=x_{0}\right] \\
& =\mathbf{E}\left[X_{1} \mid X_{1}+\cdots+X_{n}=x_{0}\right]+\cdots+\mathbf{E}\left[X_{n} \mid X_{1}+\cdots+X_{n}=x_{0}\right]
\end{aligned}
$$

Because the X_{i} 's are identically distributed, we have the following relationship.

$$
\mathbf{E}\left[X_{i} \mid X_{1}+\cdots+X_{n}=x_{0}\right]=\mathbf{E}\left[X_{j} \mid X_{1}+\cdots+X_{n}=x_{0}\right], \text { for any } 1 \leq i \leq n, 1 \leq j \leq n .
$$

Therefore,

$$
\begin{aligned}
n \mathbf{E}\left[X_{1} \mid X_{1}+\cdots+X_{n}=x_{0}\right] & =x_{0} \\
\mathbf{E}\left[X_{1} \mid X_{1}+\cdots+X_{n}=x_{0}\right] & =\frac{x_{0}}{n} .
\end{aligned}
$$

(b) Note that we can rewrite $\mathbf{E}\left[X_{1} \mid S_{n}=s_{n}, S_{n+1}=s_{n+1}, \ldots, S_{2 n}=s_{2 n}\right]$ as follows:

$$
\begin{aligned}
& \mathbf{E}\left[X_{1} \mid S_{n}=s_{n}, S_{n+1}=s_{n+1}, \ldots, S_{2 n}=s_{2 n}\right] \\
= & \mathbf{E}\left[X_{1} \mid S_{n}=s_{n}, X_{n+1}=s_{n+1}-s_{n}, X_{n+2}=s_{n+2}-s_{n+1}, \ldots, X_{2 n}=s_{2 n}-s_{2 n-1}\right] \\
= & \mathbf{E}\left[X_{1} \mid S_{n}=s_{n}\right]
\end{aligned}
$$

where the last equality holds due to the fact that the X_{i} 's are independent. We also note that

$$
\mathbf{E}\left[X_{1}+\cdots+X_{n} \mid S_{n}=s_{n}\right]=\mathbf{E}\left[S_{n} \mid S_{n}=s_{n}\right]=s_{n}
$$

It follows from the linearity of expectations that

$$
\mathbf{E}\left[X_{1}+\cdots+X_{n} \mid S_{n}=s_{n}\right]=\mathbf{E}\left[X_{1} \mid S_{n}=s_{n}\right]+\cdots+\mathbf{E}\left[X_{n} \mid S_{n}=s_{n}\right] .
$$

Because the X_{i} 's are identically distributed, we have the following relationship:

$$
\mathbf{E}\left[X_{i} \mid S_{n}=s_{n}\right]=\mathbf{E}\left[X_{j} \mid S_{n}=s_{n}\right], \text { for any } 1 \leq i \leq n, 1 \leq j \leq n
$$

Therefore,

$$
\mathbf{E}\left[X_{1}+\cdots+X_{n} \mid S_{n}=s_{n}\right]=n \mathbf{E}\left[X_{1} \mid S_{n}=s_{n}\right]=s_{n} \Rightarrow \mathbf{E}\left[X_{1} \mid S_{n}=s_{n}\right]=\frac{s_{n}}{n}
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.041SC Probabilistic Systems Analysis and Applied Probability
 Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

