Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)

Recitation 13 Solutions

October 21, 2010

1. (a) We begin by writing the definition for $\mathbf{E}[Z \mid X, Y]$

$$
\mathbf{E}[Z \mid X=x, Y=y]=\sum_{z} z p_{Z \mid X, Y}(z \mid x, y)
$$

Since $\mathbf{E}[Z \mid X, Y]$ is a function of the random variables X and Y, and is equal to $\mathbf{E}[Z \mid X=$ $x, Y=y]$ whenever $X=x$ and $Y=y$, which happens with probability $p_{X, Y}(x, y)$, using the expected value rule, we have

$$
\begin{aligned}
\mathbf{E}[\mathbf{E}[Z \mid X, Y]] & =\sum_{x} \sum_{y} \mathbf{E}[Z \mid X=x, Y=y] p_{X, Y}(x, y) \\
& =\sum_{x} \sum_{y} \sum_{z} z p_{Z \mid X, Y}(z \mid x, y) p_{X, Y}(x, y) \\
& =\sum_{x} \sum_{y} \sum_{z} z p_{X, Y, Z}(x, y, z) \\
& =\mathbf{E}[Z]
\end{aligned}
$$

(b) We start with the definition for $\mathbf{E}[Z \mid X, Y]$ which is a function of the random variables X and Y, and is equal to $\mathbf{E}[Z \mid X=x, Y=y]$ whenever $X=x$ and $Y=y$, so

$$
\mathbf{E}[Z \mid X=x, Y=y]=\sum_{z} z p_{Z \mid X, Y}(z \mid x, y)
$$

Proceeding as above, but conditioning on the event $X=x$, we have

$$
\begin{aligned}
\mathbf{E}[\mathbf{E}[Z \mid X, Y=y] \mid X=x] & =\sum_{y} \mathbf{E}[Z \mid X=x, Y=y] p_{Y \mid X}(y \mid x) \\
& =\sum_{y} \sum_{z} z p_{Z \mid X, Y}(z \mid x, y) p_{Y \mid X}(y \mid x) \\
& =\sum_{y} \sum_{z} z p_{Y, Z \mid X}(y, z \mid x) \\
& =\mathbf{E}[Z \mid X=x]
\end{aligned}
$$

Since this is true for all possible values of x, we have $\mathbf{E}[\mathbf{E}[Z \mid Y, X] \mid X]=\mathbf{E}[Z \mid X]$.
(c) We take expectations of both sides of the formula in part (b) to obtain

$$
\mathbf{E}[\mathbf{E}[Z \mid X]]=\mathbf{E}[\mathbf{E}[\mathbf{E}[Z \mid X, Y] \mid X]] .
$$

By the law of iterated expectations, the left-hand side above is $\mathbf{E}[Z]$, which establishes the desired result.
2. Let Y be the length of the piece after we break for the first time. Let X be the length after we break for the second time.

Massachusetts Institute of Technology

Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)
(a) The law of iterated expectations states:

$$
\mathbf{E}[X]=\mathbf{E}[\mathbf{E}[X \mid Y]]
$$

We have $\mathbf{E}[X \mid Y]=\frac{Y}{2}$ and $E[Y]=\frac{l}{2}$. So then:

$$
\mathbf{E}[X]=\mathbf{E}[\mathbf{E}[X \mid Y]]=\mathbf{E}[Y / 2]=\frac{1}{2} \mathbf{E}[Y]=\frac{1}{2} \frac{l}{2}=\frac{l}{4}
$$

(b) We use the Law of Total Variance to find $\operatorname{var}(X)$:

$$
\operatorname{var}(X)=\mathbf{E}[\operatorname{var}(X \mid Y)]+\operatorname{var}(\mathbf{E}[X \mid Y])
$$

Recall that the variance of a uniform random variable distributed over $[a, b]$ is $(b-a)^{2} / 12$. Since Y is uniformly distributed over $[0, \ell]$, we have

$$
\begin{aligned}
\operatorname{var}(Y) & =\frac{\ell^{2}}{12} \\
\operatorname{var}(X \mid Y) & =\frac{Y^{2}}{12}
\end{aligned}
$$

We know that $\mathbf{E}[X \mid Y]=Y / 2$, and so

$$
\operatorname{var}(\mathbf{E}[X \mid Y])=\operatorname{var}(Y / 2)=\frac{1}{4} \operatorname{var}(Y)=\frac{\ell^{2}}{48}
$$

Also,

$$
\begin{aligned}
\mathbf{E}[\operatorname{var}(X \mid Y)] & =\mathbf{E}\left[\frac{Y^{2}}{12}\right] \\
& =\int_{0}^{\ell} \frac{y^{2}}{12} f_{Y}(y) d y \\
& =\frac{1}{12} \cdot \frac{1}{\ell} \int_{0}^{\ell} y^{2} d y \\
& =\frac{\ell^{2}}{36}
\end{aligned}
$$

Combining these results, we obtain

$$
\operatorname{var}(X)=\mathbf{E}[\operatorname{var}(X \mid Y)]+\operatorname{var}(\mathbf{E}[X \mid Y])=\frac{\ell^{2}}{36}+\frac{\ell^{2}}{48}=\frac{7 \ell^{2}}{144}
$$

3. Let X_{i} denote the number of widgets in the $i^{\text {th }}$ box. Then $T=\sum_{i=1}^{N} X_{i}$.

$$
\begin{aligned}
\mathbf{E}[T] & =\mathbf{E}\left[\mathbf{E}\left[\sum_{i=1}^{N} X_{i} \mid N\right]\right] \\
& =\mathbf{E}\left[\sum_{i=1}^{N} \mathbf{E}\left[X_{i} \mid N\right]\right] \\
& =\mathbf{E}\left[\sum_{i=1}^{N} \mathbf{E}[X]\right] \\
& =\mathbf{E}[X] \cdot \mathbf{E}[N]=100
\end{aligned}
$$

Massachusetts Institute of Technology
Department of Electrical Engineering \& Computer Science 6.041/6.431: Probabilistic Systems Analysis
and,

$$
\begin{aligned}
\operatorname{var}(T) & =\mathbf{E}[\operatorname{var}(T \mid N)]+\operatorname{var}(\mathbf{E}[T \mid N]) \\
& =\mathbf{E}\left[\operatorname{var}\left(\sum_{i=1}^{N} X_{i} \mid N\right)\right]+\operatorname{var}\left(\mathbf{E}\left[\sum_{i=1}^{N} X_{i} \mid N\right]\right) \\
& =\mathbf{E}[N \operatorname{var}(X)]+\operatorname{var}(N \mathbf{E}[X]) \\
& =(\operatorname{var}(X)) \mathbf{E}[N]+(\mathbf{E}[X])^{2} \operatorname{var}(N) \\
& =16 \cdot 10+100 \cdot 16=1760 .
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.041SC Probabilistic Systems Analysis and Applied Probability

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

