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Hi. In this problem, we're going to be dealing with a variation of the usual coin-flipping problem. 

But in this case, the bias itself of the coin is going to be random. So you could think of it as, you 

don't even know what the probability of heads for the coin is.  

So as usual, we're still taking one coin and we're flipping it n times. But the difference here is 

that the bias is because it was random variable Q. And we're told that the expectation of this bias 

is some mu and that the variance of the bias is some sigma squared, which we're told is positive. 

And what we're going to be asked is find a bunch of different expectations, covariances, and 

variances.  

And we'll see that this problem gives us some good exercise in a few concepts, a lot of iterated 

expectations, which, again, tells you that when you take the expectation of a conditional 

expectation, it's just the expectation of the inner random variable. The covariance of two random 

variables is just the expectation of the product minus the product of the expectations. Law of 

total variance is the expectation of a variance, of a conditional variance plus the variance of a 

conditional expectation. And the last thing, of course, we're dealing with a bunch of Bernoulli 

random variables, coin flips. So as a reminder, for a Bernoulli random variable, if you know 

what the bias is, it's some known quantity p, then the expectation of the Bernoulii is just p, and 

the variance of the Bernoulli is p times 1 minus p.  

So let's get started. The problem tells us that we're going to define some random variables. So xi 

is going to be a Bernoulli random variable for the i coin flip.  

So xi is going to be 1 if the i coin flip was heads and 0 if it was tails. And one very important 

thing that the problem states is that conditional on Q, the random bias, so if we know what the 

random bias is, then all the coin flips are independent. And that's going to be important for us 

when we calculate all these values.  

OK, so the first thing that we need to calculate is the expectation of each of these individual 

Bernoulli random variables, xi. So how do we go about calculating what this is? Well, the 

problem gives us a int. It tells us to try using the law of iterated expectations. But in order to use 

it, you need to figure out what you need the condition on.  

What this y? What takes place in y? And in this case, a good candidate for what you condition on 

would be the bias, the Q that we're unsure about. So let's try doing that and see what we get.  

So we write out the law of iterated expectations with Q. So now hopefully, we can simplify it 

with this inter-conditional expectation is. Well, what is it really? It's saying, given what Q is, 

what is the expectation of this Bernoulli random interval xi?  
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Well, we know that if we knew what the bias was, then the expectation is just the bias itself. But 

in this case, the bias is random. But remember a conditional expectation is still a random 

variable.  

And so in this case, this actually just simplifies into Q. So whatever the bias is, the expectation is 

just equal to the bias. And so that's what it tells us. And this part is easy because we're given that 

the expectation of q is mu.  

And then the problem also defines the random variable x. X is the total number of heads within 

the n tosses. Or you can think of it as a sum of all these individual xi Bernoulli random variables. 

And now, what can we do with this? Well we can remember that linearity of expectations allows 

us to split up this sum. Expectation of a sum, we could split up into a sum of expectations.  

So this is actually just expectation of x1 plus dot dot dot plus all the way to expectation of xn. 

All right. And now, remember that we're flipping the same coin. We don't know what the bias is, 

but for all the n flips, it's the same coin. And so each of these expectations of xi should be the 

same, no matter what xi is.  

And each one of them is mu. We already calculated that earlier. And there's 10 of them, so the 

answer would be n times mu.  

So let's move on to part B. Part B now asks us to find what the covariance is between xi and xj. 

And we have to be a little bit careful here because there are two different scenarios, one where i 

and j are different indices, different tosses, and another where i and j are the same. So we have to 

consider both of these cases separately.  

Let's first do the case where x and i are different. So i does not equal j. In this case, we can just 

apply the formula that we talked about in the beginning. So this covariance is just equal to the 

expectation of xi times xj minus the expectation of xi times expectation of xj.  

All right, so we actually know what these two are, right? Expectation of xi is mu. Expectation of 

xj is also mu. So this part is just mu squared. But we need to figure out what this expectation of 

xi times xj is.  

Well, the expectation of xi times xj, we can again use the law of iterated expectations. So let's try 

conditioning on cue again. And remember we said that this second part is just mu squared.  

All right, well, how can we simplify this inner-conditional expectation? Well, we can use the fact 

that the problem tells us that, conditioned on Q, the tosses are independent. So that means that, 

conditioned on Q, xi and xj are independent.  

And remember, when random variables are independent, the expectation of product, you could 

simplify that to be the product of the expectations. And because we're in the condition world on 

Q, you have to remember that it's going to be a product of two conditional expectations. So this 

will be expectation of xi given Q times expectation of xj given Q minus mu squared still.  
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All right, now what is this? Well the expectation of xi given Q, we already argued earlier here 

that it should just be Q. And then the same thing for xj. That should also be Q. So this is just 

expectation of Q squared minus mu squared.  

All right, now if we look at this, what is the expectation of Q squared minus mu squared? Well, 

remember mu is just, we're told that mu is the expectation of Q. So what we have is the 

expectation of Q squared minus the quantity expectation of Q squared.  

And what is that, exactly? That is just the formula or the definition of what the variance of Q 

should be. So this is, in fact, exactly equal to the variance of Q, which we're told is sigma 

squared.  

All right, so what we found is that for i not equal to j, the coherence of xi and xj is exactly equal 

to sigma squared. And remember, we're told that sigma squared is positive. So what does that tell 

us? That tells us that xi and xj, or i not equal to j, these two random variables are correlated.  

And so, because they're correlated, they can't be independent. Remember, if two intervals are 

independent, that means they're uncorrelated. But the converse isn't true. But if we do know that 

two random variables are correlated, that means that they can't be independent.  

And now let's finish this by considering the second case. The second case is when i actually does 

equal j. And in that case, well, the covariance of xi and xi is just another way of writing the 

variance of xi. So covariance, xi, xi, it's just the variance of xi.  

And what is that? That is just the expectation of xi squared minus expectation of xi quantity 

squared. And again, we know what the second term is. The second term is expectation of xi 

quantity squared. Expectation of xi we know from part A is just mu, right? So that's just second 

term is just mu squared.  

But what is the expectation of xi squared? Well, we can think about this a little bit more. And 

you can realize that xi squared is actually exactly the same thing as just xi.  

And this is just a special case because xi is a Bernoulli random variable. Because Bernoulli is 

either 0 or 1. And if it's 0 and you square it, it's still 0. And if it's 1 and you square it, it's still 1.  

So squaring it doesn't really doesn't actually change anything. It's exactly the same thing as the 

original random variable. And so, because this is a Bernoulli random variable, this is exactly just 

the expectation of xi.  

And we said this part is just mu squared. So this is just expectation of xi, which we said was mu. 

So the answer is just mu minus mu squared.  

OK, so this completes part B. And the answer that we wanted was that in fact, xi and xj are in 

fact not independent. Right.  
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So let's write down some facts that we'll want to remember. One of them is that expectation of xi 

is mu. And we also want to remember what this covariance is.  

The covariance of xi and xj is equal to sigma squared when i does not equal j. So we'll be using 

these facts again later. And the variance of xi is equal to mu minus mu squared.  

So now let's move on to the last part, part C, which asks us to calculate the variance of x in two 

different ways. So the first way we'll do it is using the law of total variance. So the law of total 

variance will tell us that we can write the variance of x as a sum of two different parts. So the 

first is variance of x expectation of the variance of x conditioned on something plus the variance 

of the initial expectation of x conditioned on something. And as you might have guessed, what 

we're going to condition on is Q.  

Let's calculate what these two things are. So let's do the two terms separately. What is the 

expectation of the conditional variance of x given Q?  

Well, what is-- this, we can write out x. Because x, remember, is just the sum of a bunch of these 

Bernoulli random variables. And now what we'll do was, well, again, use the important fact that 

the x's, we're told, are conditionally independent, conditional on Q.  

And because they're independent, remember the variance of a sum is not the sum of the variance. 

It's only the sum of the variance if the terms in the sum are independent. In this case, they are 

conditionally independent given Q. So we can in fact split this up and write it as the variance of 

x1 given Q plus all the way to the variance of xn given Q.  

And in fact, all these are the same, right? So we just have n copies of the variance of, say, x1 

given Q. Now, what is the variance of x1 given Q?  

Well, x1 is just a Bernoulli random variable. But the difference is that for x, we don't know what 

the bias or what the Q is. Because it's some random bias Q  

But just like we said earlier in part A, when we talked about the expectation of x1 given Q, this is 

actually just Q times 1 minus Q. Because if you knew what the bias were, it would be p times 1 

minus p. So the bias times 1 minus the bias.  

But you don't know what it is. But if you did, it would just be q. So what we do is we just plug in 

Q, and you get Q times 1 minus 2.  

All right, and now this is expectation of n. I can pull out the n. So it's n times the expectation of 

Q minus Q squared, which is just n times expectation Q, we can use linearity of expectations 

again, expectation of Q is mu.  

And the expectation of Q 2 squared is, well, we can do that on the side. Expectation of Q squared 

is the variance of Q plus expectation of Q quantity squared. So that's just sigma squared plus mu 

squared. And so this is just going to be then minus sigma squared minus mu squared.  
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All right, so that's the first term. Now let's do the second term. The variance the conditional 

expectation of x given Q. And again, what we can do is we can write x as the sum of all these 

xi's.  

And now we can apply linearity of expectations. So we would get n times one of these 

expectations. And remember, we said earlier the expectation of x1 given Q is just Q. So it's the 

variance of n times Q.  

And remember now, n is just-- it's not random. It's just some number. So when you pull it out of 

a variance, you square it. So this is n squared times the variance of Q.  

And the variance of Q we're given is sigma squared. So this is n squared times sigma squared. So 

the final answer is just a combination of these two terms. This one and this one.  

So let's write it out. The variance of x, then, is equal to-- we can combine terms a little bit. So the 

first one, let's take the mus and we'll put them together. So it's n mu minus mu squared.  

And then we have n squared times sigma squared from this term and minus n times sigma 

squared from this term. So it would be n squared minus n times sigma squared, or n times n 

minus 1 times sigma squared. So that is the final answer that we get for the variance of x.  

And now, let's try doing it another way. So that's one way of doing it. That's using the law of 

total expectations and conditioning on Q. Another way of finding the variance of x is to use the 

formula involving covariances, right? And we can use that because x is actually a sum of 

multiple random variables x1 through xn.  

And the formula for this is, you have n variance terms plus all these other ones. Where i is not 

equal to j, you have the covariance terms. And really, it's just, you can think of it as a double sum 

of all pairs of xi and xj where if i and j happen just to be the same, that it simplifies to be just the 

variance. Now, so we pulled theses n terms out because they are different than these because 

they have a different value.  

And now fortunately, we've already calculated what these values are in part B. So we can just 

plug them them. All the variances are the same. And there's n of them, so we get n times the 

variance of each one. The variance of each one we calculated already was mu minus mu squared.  

And then, we have all the terms were i is not equal to j. Well, there are actually n squared minus 

n of them. So because you can take any one of the n's to be the first to be i, any one of the n to be 

j. So that gives you n squared pairs.  

But then you have to subtract out all the ones where i and j are the same. And there are n of 

them. So that leaves you with n squared minus n of these pairs where i is not equal to j.  

And the coherence for this case where i is not equal to j, we also calculated in part B. That's just 

sigma squared. All right, and now if we compare these two, we'll see that they are proportionally 
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exactly the same. So we've use two different methods to calculate the variance, one using this 

summation and one using the law of total variance.  

So what do we learn from this problem? Well, we saw that first of all, in order to find some 

expectations, it's very useful to use law of iterated expectations. But the trick is to figure out 

what you should condition on. And that's kind of an art that you learn through more practice.  

But one good rule of thumb is, when you have kind of a hierarchy or layers of randomness where 

one layer of randomness depends on the randomness of the layer above-- so in this case, whether 

or not you get heads or tails depends on, that's random, but that depends on the randomness on 

the level above, which was the random bias of the coin itself. So the rule of thumb is, when you 

want to calculate the expectations for the layer where you're talking about heads or tails, it's 

useful to condition on the layer above where that is, in this case, the random bias. Because once 

you condition on the layer above, that makes the next level much simpler. Because you kind of 

assume that you know what all the previous levels of randomness are, and that helps you 

calculate what the expectation for this current level. And the rest of the problem was just kind of 

going through exercises of actually applying the--  
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