LECTURE 9

- Readings: Sections 3.4-3.5

Outline

- PDF review
- Multiple random variables
- conditioning
- independence
- Examples

Summary of concepts

$$
\begin{array}{rcl}
p_{X}(x) & & f_{X}(x) \\
& F_{X}(x) & \\
\sum_{x} x p_{X}(x) & \mathbf{E}[X] & \int x f_{X}(x) d x \\
& \operatorname{var}(X) & \\
p_{X, Y}(x, y) & & f_{X, Y}(x, y) \\
p_{X \mid A}(x) & & f_{X \mid A}(x) \\
p_{X \mid Y}(x \mid y) & & f_{X \mid Y}(x \mid y)
\end{array}
$$

Continuous r.v.'s and pdf's

$$
\mathbf{P}(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) d x
$$

- $\mathbf{P}(x \leq X \leq x+\delta) \approx f_{X}(x) \cdot \delta$
- $\mathrm{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$

Joint PDF $f_{X, Y}(x, y)$

$$
\mathbf{P}((X, Y) \in S)=\iint_{S} f_{X, Y}(x, y) d x d y
$$

- Interpretation:
$\mathbf{P}(x \leq X \leq x+\delta, y \leq Y \leq y+\delta) \approx f_{X, Y}(x, y) \cdot \delta^{2}$
- Expectations:
$\mathrm{E}[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y$
- From the joint to the marginal:

$$
f_{X}(x) \cdot \delta \approx \mathbf{P}(x \leq X \leq x+\delta)=
$$

- X and Y are called independent if

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y), \quad \text { for all } x, y
$$

Buffon's needle

- Parallel lines at distance d Needle of length ℓ (assume $\ell<d$)
- Find \mathbf{P} (needle intersects one of the lines)

- $X \in[0, d / 2]$: distance of needle midpoint to nearest line
- Model: X, Θ uniform, independent
$f_{X, \Theta}(x, \theta)=\quad 0 \leq x \leq d / 2,0 \leq \theta \leq \pi / 2$
- Intersect if $X \leq \frac{\ell}{2} \sin \Theta$

$$
\begin{aligned}
\mathbf{P}\left(X \leq \frac{\ell}{2} \sin \Theta\right) & =\iint_{x \leq \frac{\ell}{2} \sin \theta} f_{X}(x) f_{\Theta}(\theta) d x d \theta \\
& =\frac{4}{\pi d} \int_{0}^{\pi / 2} \int_{0}^{(\ell / 2) \sin \theta} d x d \theta \\
& =\frac{4}{\pi d} \int_{0}^{\pi / 2} \frac{\ell}{2} \sin \theta d \theta=\frac{2 \ell}{\pi d}
\end{aligned}
$$

Conditioning

- Recall

$$
\mathbf{P}(x \leq X \leq x+\delta) \approx f_{X}(x) \cdot \delta
$$

- By analogy, would like:

$$
\mathbf{P}(x \leq X \leq x+\delta \mid Y \approx y) \approx f_{X \mid Y}(x \mid y) \cdot \delta
$$

- This leads us to the definition:
$f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)} \quad$ if $f_{Y}(y)>0$
- For given y, conditional PDF is a (normalized) "section" of the joint PDF
- If independent, $f_{X, Y}=f_{X} f_{Y}$, we obtain

$$
f_{X \mid Y}(x \mid y)=f_{X}(x)
$$

Stick-breaking example

- Break a stick of length ℓ twice: break at X : uniform in $[0,1]$; break again at Y, uniform in $[0, X]$

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y \mid X}(y \mid x)=
$$

on the set:

$\mathbf{E}[Y \mid X=x]=\int y f_{Y \mid X}(y \mid X=x) d y=$
$f_{X, Y}(x, y)=\frac{1}{\ell x}, \quad 0 \leq y \leq x \leq \ell$

$$
\begin{aligned}
f_{Y}(y) & =\int f_{X, Y}(x, y) d x \\
& =\int_{y}^{\ell} \frac{1}{\ell x} d x \\
& =\frac{1}{\ell} \log \frac{\ell}{y}, \quad 0 \leq y \leq \ell
\end{aligned}
$$

$\mathrm{E}[Y]=\int_{0}^{\ell} y f_{Y}(y) d y=\int_{0}^{\ell} y \frac{1}{\ell} \log \frac{\ell}{y} d y=\frac{\ell}{4}$

MIT OpenCourseWare
http://ocw.mit.edu

6.041SC Probabilistic Systems Analysis and Applied Probability

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

