Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)

Problem Set 5: Solutions

1. (a) Because of the required normalization property of any joint PDF,

$$
1=\int_{x=1}^{2}\left(\int_{y=x}^{2} a x d y\right) d x=\int_{x=1}^{2} a x(2-x) d x=a\left(2^{2}-1^{2}-\frac{2^{3}}{3}+\frac{1^{3}}{3}\right)=\frac{2}{3} a
$$

so $a=3 / 2$.
(b) For $1 \leq y \leq 2$,

$$
f_{Y}(y)=\int_{1}^{y} a x d x=\frac{a}{2}\left(y^{2}-1\right)=\frac{3}{4}\left(y^{2}-1\right)
$$

and $f_{Y}(y)=0$ otherwise.
(c) First notice that for $1 \leq x \leq 3 / 2$,

$$
f_{X \mid Y}(x \mid 3 / 2)=\frac{f_{X, Y}(x, 3 / 2)}{f_{Y}(3 / 2)}=\frac{(3 / 2) x}{\frac{3}{4}\left(\left(\frac{3}{2}\right)^{2}-1^{2}\right)}=\frac{8 x}{5} .
$$

Therefore,

$$
\mathbf{E}[1 / X \mid Y=3 / 2]=\int_{1}^{3 / 2} \frac{1}{x} \frac{8 x}{5} d x=4 / 5
$$

2. (a) By definition $f_{X, Y}(x, y)=f_{X}(x) f_{Y \mid X}(y \mid x) . f_{X}(x)=a x$ as shown in the graph. We have that

$$
1=\int_{0}^{40} a x d x=800 a
$$

So $f_{X}(x)=x / 800$. From the problem statement $f_{Y \mid X}(y \mid x)=\frac{1}{2 x}$ for $y \in[0,2 x]$. Therefore,

$$
f_{X, Y}(x, y)= \begin{cases}1 / 1600, & \text { if } 0 \leq x \leq 4 \text { and } 0<y<2 x \\ 0, & \text { otherwise }\end{cases}
$$

(b) Paul makes a positive profit if $Y>X$. This occurs with probability

$$
\mathbf{P}(Y>X)=\iint_{y>x} f_{X, Y}(x, y) d y d x=\int_{0}^{40} \int_{x}^{2 x} \frac{1}{1600} d y d x=\frac{1}{2}
$$

We could have also arrived at this answer by realizing that for each possible value of X, there is a $1 / 2$ probability that $Y>X$.
(c) The joint density function satisfies $f_{X, Z}(x, z)=f_{X}(x) f_{Z \mid X}(z \mid x)$. Since Z is conditionally uniformly distributed given $X, f_{Z \mid X}(z \mid x)=\frac{1}{2 x}$ for $-x \leq z \leq x$. Therefore, $f_{X, Z}(x, z)=$ $1 / 1600$ for $0 \leq x \leq 40$ and $-x \leq z \leq x$. The marginal density $f_{z}(z)$ is calculated as

$$
f_{Z}(z)=\int_{x} f_{X, Z}(x, z) d x=\int_{x=|z|}^{40} \frac{1}{1600} d x= \begin{cases}\frac{40-|z|}{1600}, & \text { if }|z|<40 \\ 0, & \text { otherwise }\end{cases}
$$

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)
3. (a) In order for X and Y to be independent, any observation of X should not give any information on Y. If X is observed to be equal to 0 , then Y must be 0 .
In other words, $f_{Y \mid\{X=0\}}(y \mid 0) \neq f_{Y}(y)$. Therefore, X and Y are not independent.
(b) $f_{X}(x)= \begin{cases}x / 2, & \text { if } 0 \leq x \leq 1, \\ -3 x / 2+3, & \text { if } 1<x \leq 2, \\ 0, & \text { otherwise. }\end{cases}$

$f_{Y \mid X}(y \mid 0.5)= \begin{cases}2, & \text { if } 0 \leq y \leq 1 / 2, \\ 0, & \text { otherwise } .\end{cases}$

$f_{X \mid Y}(x \mid 0.5)= \begin{cases}1 / 2, & \text { if } 1 / 2 \leq x \leq 1, \\ 3 / 2, & \text { if } 1<x \leq 3 / 2, \\ 0, & \text { otherwise } .\end{cases}$

(c) The event A leaves us with a right triangle with a constant height. The conditional PDF is then $1 /$ area $=8$. The conditional expectation yields:

$$
\begin{aligned}
\mathbf{E}[R \mid A] & =\mathbf{E}[X Y \mid A] \\
& =\int_{0}^{0.5} \int_{y}^{0.5} 8 x y d x d y \\
& =1 / 16 .
\end{aligned}
$$

(d) The CDF of W is $F_{W}(w)=\mathbf{P}(W \leq w)=\mathbf{P}(Y-X \leq w)=\mathbf{P}(Y \leq X+w)$. $\mathbf{P}(Y \leq X+w)$ can be computed by integrating the area below the line $Y=X+w$ for all possible values of w. The lines $Y=X+w$ are shown below for $w=0, w=-1 / 2, w=-1$ and $w=-3 / 2$. The probabilities of interest can be calculated by taking advantage of the uniform PDF over the two triangles. Remember to multiply the areas by the appropriate joint density $f_{X, Y}(x, y)$! Take note that there are 4 regions of interest: $w<-2,-2 \leq w \leq-1,-1<w \leq 0$ and $w>0$.

The CDF of W is

$$
\begin{aligned}
F_{W}(w) & = \begin{cases}0, & \text { if } w<-2, \\
3 / 2 \cdot 1 / 2(2+w)^{2} / 2, & \text { if }-2 \leq w \leq-1, \\
1 / 2 \cdot 1 / 2(1+w)^{2}+3 / 2 \cdot(1 / 2 \cdot 1 \cdot 1-1 / 2(-w / 2 \cdot-w)), & \text { if }-1<w \leq 0, \\
1, & \text { if } w>0\end{cases} \\
& = \begin{cases}0, & \text { if } w<-2, \\
3 / 8 \cdot(2+w)^{2}, & \text { if }-2 \leq w \leq-1, \\
1 / 8 \cdot\left(-w^{2}+4 w+8\right), & \text { if }-1<w \leq 0, \\
1, & \text { if } w>0 .\end{cases}
\end{aligned}
$$

As a sanity check, $F_{W}(-\infty)=0$ and $F_{W}(+\infty)=1$. Also, $F_{W}(w)$ is continuous at $w=-2$ and at $w=-1$.
4. (a) If the transmitter sends the 0 symbol, the received signal is a normal random variable with a mean of -2 and a variance of 4 . In other words, $f_{Y \mid X}(y \mid-2)=\mathcal{N}(-2,4)$.
Also, $f_{Y \mid X}(y \mid 2)=\mathcal{N}(2,4)$ These conditional pdfs are shown in the graph below.

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)

The probability of error can be found using the total probability theorem.

$$
\begin{aligned}
\mathbf{P}(\text { error }) & =\mathbf{P}(\text { error } \mid X=-2) \mathbf{P}(X=-2)+\mathbf{P}(\text { error } \mid X=2) \mathbf{P}(X=2) \\
& =\frac{1}{2}(\mathbf{P}(Y \geq 0 \mid X=-2)+\mathbf{P}(Y<0 \mid X=2)) \\
& =\frac{1}{2}(\mathbf{P}(N \geq 2 \mid X=-2)+\mathbf{P}(N<-2 \mid X=2)) \\
& =\frac{1}{2}(\mathbf{P}(N \geq 2)+\mathbf{P}(N<-2)) \\
& =\frac{1}{2}\left(\mathbf{P}\left(\frac{N-0}{2} \geq \frac{2-0}{2}\right)+\mathbf{P}\left(\frac{N-0}{2}<\frac{-2-0}{2}\right)\right) \\
& =\frac{1}{2}((1-\Phi(1))+(1-\Phi(1))) \\
& =0.1587 .
\end{aligned}
$$

(b) With 3 components, the probability of error given an obervation of X is the probability of decoding 2 or 3 of the components incorrectly. For each component, the probability of error is 0.1587 . Therefore,

$$
\begin{aligned}
\mathbf{P}(\text { error } \mid \text { sent } 0) & =\binom{3}{2}(0.1587)^{2}(1-0.1587)+(0.1587)^{3} \\
& =0.0676 .
\end{aligned}
$$

By symmetry, $\mathbf{P}($ error \mid sent 1$)=\mathbf{P}($ error \mid sent 0$)$.
Therefore, $\mathbf{P}($ error $)=\mathbf{P}($ error \mid sent 0$) \mathbf{P}($ sent 0$)+\mathbf{P}($ error \mid sent 1$) \mathbf{P}($ sent 1$)=0.0676$.
5. (a) There are many ways to show that X and Y are not independent. One of the most intuitive arguments is that knowing the value of X limits the range of Y, and vice versa. For instance, if it is known in a particular trial that $X \geq 1 / 2$, the value of Y in that trial cannot be smaller

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)
than $1 / 2$. Another way to prove that the two are not independent is to calculate the product of their expectations, and show that this is not equal to $\mathbf{E}[X Y]$.
(b) Applying the definition of a marginal PDF,
for $0 \leq x \leq 1$,

$$
\begin{aligned}
f_{X}(x) & =\int_{y} f_{X, Y}(x, y) d y \\
& =\int_{x}^{x+1} 1 d y \\
& =1
\end{aligned}
$$

for $0 \leq y \leq 1$,

$$
\begin{aligned}
f_{Y}(y) & =\int_{x} f_{X, Y}(x, y) d x \\
& =\int_{0}^{y} 1 d x \\
& =y
\end{aligned}
$$

and for $1 \leq y \leq 2$,

$$
\begin{aligned}
f_{Y}(y) & =\int_{x} f_{X, Y}(x, y) d x \\
& =\int_{y-1}^{1} 1 d x \\
& =2-y
\end{aligned}
$$

(c) By linearity of expectation, the expected value of a sum is the sum of the expected values. By inspection, $\mathbf{E}[X]=1 / 2$ and $\mathbf{E}[Y]=1$.
Thus, $\mathbf{E}[X+Y]=\mathbf{E}[X]+\mathbf{E}[Y]=3 / 2$.

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(d) The variance of $X+Y$ is

$$
\begin{equation*}
\mathbf{E}\left[(X+Y)^{2}\right]-\mathbf{E}[X+Y]^{2}=\mathbf{E}\left[X^{2}\right]+2 \mathbf{E}[X Y]+\mathbf{E}\left[Y^{2}\right]-(\mathbf{E}[X+Y])^{2} . \tag{1}
\end{equation*}
$$

In part (c), $\mathbf{E}[X+Y]$ was computed, so only the other three expressions need to be calculated. First, the expected value of X^{2} :

$$
\mathbf{E}\left[X^{2}\right]=\int_{0}^{1} x^{2} \int_{x}^{x+1} 1 d y d x=\int_{0}^{1} x^{2} d x=1 / 3
$$

Also, the expected value of Y^{2} is

$$
\mathbf{E}\left[Y^{2}\right]=\int_{0}^{1} \int_{x}^{x+1} y^{2} d y d x=\int_{0}^{1}\left(3 x^{2}+3 x+1\right) / 3 d x=7 / 6
$$

Finally, the expected value of $X Y$ is

$$
\begin{aligned}
\mathbf{E}[X Y] & =\int_{0}^{1} x \int_{x}^{x+1} y d y d x \\
& =\int_{0}^{1}\left(2 x^{2}+x\right) / 2 d x d y=7 / 12 .
\end{aligned}
$$

Substituting these into (1), we get $\operatorname{var}(X+Y)=1 / 3+7 / 6+7 / 6-9 / 4=5 / 12$.

Alternative (shortcut) solution to parts (c) and (d)

Given any value of X (in $([0,1])$, we observe that $Y-X$ takes values between 0 and 1 , and is uniformly distributed. Since the conditional distribution of $Y-X$ is the same for every value of X in $[0,1]$, we see that $Y-X$ independent of X. Thus: (a) X is uniform, and (b) $Y=X+U$, where U is also uniform and independent of X. It follows that $\mathbf{E}[X+Y]=\mathbf{E}[2 X+U]=3 / 2$. Furthermore, $\operatorname{var}(X+Y)=4 \operatorname{var}(X)+\operatorname{var}(U)=5 / 12$.
6. (a) Let A be the event that the first coin toss resulted in heads. To calculate the probability $\mathbf{P}(A)$, we use the continuous version of the total probability theorem:

$$
\mathbf{P}(A)=\int_{0}^{1} \mathbf{P}(A \mid P=p) f_{P}(p) d p=\int_{0}^{1} p(1+\sin (2 \pi p)) d p
$$

which after some calculation yields

$$
\mathbf{P}(A)=\frac{\pi-1}{2 \pi} .
$$

(b) Using Bayes rule,

$$
\begin{aligned}
f_{P \mid A}(p) & =\frac{\mathbf{P}(A \mid P=p) f_{P}(p)}{\mathbf{P}(A)} \\
& = \begin{cases}\frac{2 \pi p(1+\sin (2 \pi p))}{\pi-1}, & \text { if } 0 \leq p \leq 1, \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Massachusetts Institute of Technology

Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)
(c) Let B be the event that the second toss resulted in heads. We have

$$
\begin{aligned}
\mathbf{P}(B \mid A) & =\int_{0}^{1} \mathbf{P}(B \mid P=p, A) f_{P \mid A}(p) d p \\
& =\int_{0}^{1} \mathbf{P}(B \mid P=p) f_{P \mid A}(p) d p \\
& =\frac{2 \pi}{\pi-1} \int_{0}^{1} p^{2}(1+\sin (2 \pi p)) d p
\end{aligned}
$$

After some calculation, this yields

$$
\mathbf{P}(B \mid A)=\frac{2 \pi}{\pi-1} \cdot \frac{2 \pi-3}{6 \pi}=\frac{2 \pi-3}{3 \pi-3} \approx 0.5110
$$

G1 ${ }^{\dagger}$. Let $a=(\cos \theta, \sin \theta)$ and $b=\left(b_{x}, b_{y}\right)$. We will show that no point of R lies outside C if and only if

$$
\begin{equation*}
|b| \leq|\sin \theta|, \quad \text { and } \quad|a| \leq|\cos \theta| \tag{2}
\end{equation*}
$$

The other two vertices of R are $\left(\cos \theta, b_{y}\right)$ and $\left(b_{x}, \sin \theta\right)$. If $\left|b_{x}\right| \leq|\cos \theta|$ and $\left|b_{y}\right| \leq|\sin \theta|$, then each vertex (x, y) of R satisfies $x^{2}+y^{2} \leq \cos ^{2} \theta+\sin ^{2} \theta=1$ and no points of R can lie outside of C. Conversely if no points of R lie outside C, then applying this to the two vertices other than a and b, we find

$$
\cos ^{2} \theta+b^{2} \leq 1, \quad \text { and } \quad a^{2}+\sin ^{2} \theta \leq 1
$$

which is equivalent to 2 .
These conditions imply that $\left(b_{x}, b_{y}\right)$ lies inside or on C, so for any given θ, the probability that the random point $b=\left(b_{x}, b_{y}\right)$ satisfies (2) is

$$
\frac{2|\cos \theta| \cdot 2|\sin \theta|}{\pi}=\frac{2}{\pi}|\sin (2 \theta)|
$$

and the overall probability is

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{2}{\pi}|\sin (2 \theta)| d \theta=\frac{4}{\pi^{2}} \int_{0}^{\pi / 2} \sin (2 \theta) d \theta=\frac{4}{\pi^{2}}
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.041SC Probabilistic Systems Analysis and Applied Probability
 Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

