Massachusetts Institute of Technology

Department of Electrical Engineering & Computer Science

6.041/6.431: Probabilistic Systems Analysis (Quiz 2 Solutions | Fall 2009)

(e) (7 points)

In the new universe in which X=2, we are asked to compute the conditional PDF of Y given the event $Y \geq 3$.

$$f_{Y|X,Y\geq 3}(y\mid 2) = \frac{f_{Y|X}(y\mid 2)}{\mathbf{P}(Y\geq 3\mid X=2)}.$$

We first calculate the $\mathbf{P}(Y \geq 3 \mid X = 2)$.

$$\mathbf{P}(Y \ge 3 \mid X = 2) = \int_{3}^{\infty} f_{Y|X}(y \mid 2) dy$$
$$= \int_{3}^{\infty} 2e^{-2y} dy$$
$$= 1 - F_{Y|X}(3 \mid 2)$$
$$= 1 - (1 - e^{-2 \cdot 3})$$
$$= e^{-6},$$

where $F_{Y|X(3|2)}$ is the CDF of an exponential random variable with $\lambda = 2$ evaluated at y = 3. Substituting the values of $f_{Y|X}(y \mid 2)$ and $\mathbf{P}(Y \geq 3 \mid X = 2)$ yields

$$f_{Y|X,Y\geq 3}(y\mid 2) = \left\{ \begin{array}{ll} 2e^{6}e^{-2y}, & y\geq 3\\ 0, & \text{otherwise.} \end{array} \right.$$

Alternatively, $f_{Y|X}(y \mid 2)$ is an exponential random variable with $\lambda = 2$. To compute the conditional PMF $f_{Y|X,Y\geq 3}(y \mid 2)$, we can apply the memorylessness property of an exponential variable. Therefore, this conditional PMF is also an exponential random variable with $\lambda = 2$, but it is shifted by 3.

(f) (7 points)

Let's define $Z = e^{2X}$. Since X is an exponential random variable that takes on non-negative values $(X \ge 0), Z \ge 1$. We find the PDF of Z by first computing its CDF.

$$F_Z(z) = \mathbf{P}(Z \le z)$$

$$= \mathbf{P}(e^{2X} \le z)$$

$$= \mathbf{P}(2X \le \ln z)$$

$$= \mathbf{P}(X \le \frac{\ln z}{2})$$

$$= 1 - e^{-\frac{\ln z}{2}}$$

$$= 1 - e^{\ln z^{-\frac{1}{2}}}$$

The CDF of Z is:

$$F_Z(z) = \begin{cases} 1 - z^{-\frac{1}{2}} & z \ge 1\\ 0, & z < 1 \end{cases}$$

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering & Computer Science

6.041/6.431: Probabilistic Systems Analysis (Quiz 1 Solutions | Fall 2009)

Differentiating the CDF of Z yields the PDF

$$f_Z(z) = \begin{cases} \frac{1}{2}z^{-\frac{3}{2}} & z \ge 1\\ 0, & z < 1 \end{cases}$$

Alternatively, you can apply the PDF formula for a strictly monotonic function of a continuous random variable. Recall if z = g(x) and x = h(z), then

$$f_Z(z) = f_X(h(z)) \left| \frac{dh}{dy}(z) \right|.$$

In this problem, $z = e^{2x}$ and $x = \frac{1}{2} \ln z$. Note that $f_Z(z)$ is nonzero for z > 1. Since X is an exponential random variable with $\lambda = 1$, $f_X(x) = e^x$. Thus,

$$f_Z(z) = e^{-\frac{1}{2}\ln z} \left| \frac{1}{2z} \right|$$

$$= e^{\ln z^{-\frac{1}{2}}} \frac{1}{2z}$$

$$= \frac{1}{2}z^{-\frac{3}{2}} \quad z \ge 1,$$

where the second equality holds since the expression inside the absolute value is always positive for $z \ge 1$.

Problem 3. (10 points)

- (a) (5 points) The quantity $\mathbf{E}[X \mid Y]$ is always:
 - (i) A number.
 - (ii) A discrete random variable.
 - (iii) A continuous random variable.
 - (iv) Not enough information to choose between (i)-(iii).

If X and Y are not independent, then $\mathbf{E}[X \mid Y]$ is a function of Y and is therefore a continuous random variable. However if X and Y are independent, then $\mathbf{E}[X \mid Y] = \mathbf{E}[X]$ which is a number.

- (b) (5 points) The quantity $\mathbf{E}[\mathbf{E}[X\mid Y,N]\mid N]$ is always:
 - (i) A number.
 - (ii) A discrete random variable.
 - (iii) A continuous random variable.
 - (iv) Not enough information to choose between (i)-(iii).

If X, Y and N are not independent, then the inner expectation $G(Y, N) = \mathbf{E}[X \mid Y, N]$ is a function of Y and N. Furthermore $\mathbf{E}[G(Y, N) \mid N]$ is a function of N, a discrete random variable. If X, Y and N are independent, then the inner expectation $\mathbf{E}[X \mid Y, N] = \mathbf{E}[X]$, which is a number. The expectation of a number given N is still a number, which is a special case of a discrete random variable.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering & Computer Science

6.041/6.431: Probabilistic Systems Analysis (Quiz 1 Solutions | Fall 2009)

Problem 4. (25 points)

(a) (i) (5 points)
Using the Law of Iterated Expectations, we have

$$\mathbf{E}[X] = \mathbf{E}[\mathbf{E}[X \mid Q]] = \mathbf{E}[Q] = \frac{1}{2}.$$

- (ii) (5 points) X is a Bernoulli random variable with a mean $p = \frac{1}{2}$ and its variance is var(X) = p(1-p) = 1/4.
- (b) (7 points) We know that $cov(X, Q) = \mathbf{E}[XQ] - \mathbf{E}[X]\mathbf{E}[Q]$, so first let's calculate $\mathbf{E}[XQ]$:

$$\mathbf{E}[XQ] = \mathbf{E}[\mathbf{E}[XQ \mid Q]] = \mathbf{E}[Q\mathbf{E}[X \mid Q]] = \mathbf{E}[Q^2] = \frac{1}{3}.$$

Therefore, we have

$$cov(X,Q) = \frac{1}{3} - \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{12}.$$

(c) (8 points) Using Bayes' Rule, we have

$$f_{Q|X}(q \mid 1) = \frac{f_Q(q)p_{X|Q}(1 \mid q)}{p_X(1)} = \frac{f_Q(q)\mathbf{P}(X=1 \mid Q=q)}{\mathbf{P}(X=1)}, \quad 0 \le q \le 1.$$

Additionally, we know that

$$\mathbf{P}(X=1 \mid Q=q) = q,$$

and that for Bernoulli random variables

$$\mathbf{P}(X=1) = \mathbf{E}[X] = \frac{1}{2}.$$

Thus, the conditional PDF of Q given X = 1 is

$$f_{Q|X}(q \mid 1) = \frac{1 \cdot q}{1/2}$$

$$= \begin{cases} 2q, & 0 \le q \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

Problem 5. (21 points)

(a) (7 points)

$$\mathbf{P}(S \ge 1) = \mathbf{P}(\min\{X, Y\} \ge 1) = \mathbf{P}(X \ge 1 \text{ and } Y \ge 1) = \mathbf{P}(X \ge 1)\mathbf{P}(Y \ge 1)$$

= $(1 - F_X(1))(1 - F_Y(1)) = (1 - \Phi(1))^2 \approx (1 - 0.8413)^2 \approx 0.0252$.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering & Computer Science 6.041/6.431: Probabilistic Systems Analysis (Quiz 1 Solutions | Fall 2009)

(b) (7 points)

Recalling Problem 2 of Problem Set 6, we have

$$\mathbf{P}(s \le S \text{ and } L \le \ell) = \mathbf{P}(s \le \min\{X, Y\} \text{ and } \max\{X, Y\} \le \ell)$$

$$= \mathbf{P}(s \le X \text{ and } s \le Y \text{ and } X \le \ell \text{ and } Y \le \ell)$$

$$= \mathbf{P}(s \le X \le \ell)\mathbf{P}(s \le Y \le \ell)$$

$$= (F_X(\ell) - F_X(s))(F_Y(\ell)F_Y(s)).$$

(c) (7 points)

Given that $s \leq s + \delta \leq \ell$, the event $\{s \leq S \leq s + \delta, \ell \leq L \leq \ell + \delta\}$ is made up of the union of two disjoint possible events:

$$\{s \le X \le s + \delta, \ell \le Y \le \ell + \delta\} \cup \{s \le Y \le s + \delta, \ell \le X \le \ell + \delta\}.$$

In other words, either S = X and L = Y, or S = Y and L = X. Because the two events are disjoint, the probability of their union is equal to the sum of their individual probabilities.

Using also the independence of X and Y, we have

$$\mathbf{P}(s \le S \le s + \delta, \ell \le L \le \ell + \delta) = \mathbf{P}(s \le X \le s + \delta, \ell \le Y \le \ell + \delta) + \mathbf{P}(s \le y \le s + \delta, \ell \le X \le \ell + \delta)$$

$$= \mathbf{P}(s \le X \le s + \delta)\mathbf{P}(\ell \le Y \le \ell + \delta) + \mathbf{P}(s \le y \le s + \delta)\mathbf{P}(\ell \le X \le \ell + \delta)$$

$$= \int_{s}^{s+\delta} f_{X}(x)dx \int_{\ell}^{\ell+\delta} f_{Y}(y)dy + \int_{s}^{s+\delta} f_{Y}(y)dy \int_{\ell}^{\ell+\delta} f_{X}(x)dx$$

6.041SC Probabilistic Systems Analysis and Applied Probability Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.