Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis
 (Quiz †| Fall 2010)

Problem 1. (80 points) In this problem:
(i) X is a (continuous) uniform random variable on $[0,4]$.
(ii) Y is an exponential random variable, independent from X, with parameter $\lambda=2$.

1. (10 points) Find the mean and variance of $X-3 Y$.
2. (10 points) Find the probability that $Y \geq X$. (Let c be the answer to this question.)
3. (10 points) Find the conditional joint PDF of X and Y, given that the event $Y \geq X$ has occurred.
(You may express your answer in terms of the constant c from the previous part.)
4. (10 points) Find the PDF of $Z=X+Y$.
5. (10 points) Provide a fully labeled sketch of the conditional PDF of Z given that $Y=3$.
6. (10 points) Find $\mathbf{E}[Z \mid Y=y]$ and $\mathbf{E}[Z \mid Y]$.
7. (10 points) Find the joint PDF $f_{Z, Y}$ of Z and Y.
8. (10 points) A random variable W is defined as follows. We toss a fair coin (independent of Y). If the result is "heads", we let $W=Y$; if it is tails, we let $W=2+Y$. Find the probability of "heads" given that $W=3$.

Problem 2. (30 points) Let X, X_{1}, X_{2}, \ldots be independent normal random variables with mean 0 and variance 9 . Let N be a positive integer random variable with $\mathbf{E}[N]=2$ and $\mathbf{E}\left[N^{2}\right]=5$. We assume that the random variables $N, X, X_{1}, X_{2}, \ldots$ are independent. Let $S=\sum_{i=1}^{N} X_{i}$.

1. (10 points) If δ is a small positive number, we have $\mathbf{P}(1 \leq|X| \leq 1+\delta) \approx \alpha \delta$, for some constant α. Find the value of α.
2. (10 points) Find the variance of S.
3. (5 points) Are N and S uncorrelated? Justify your answer.
4. (5 points) Are N and S independent? Justify your answer.

Each question is repeated in the following pages. Please write your answer on the appropriate page.

Massachusetts Institute of Technology
Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Quiz † | Fall 2010)
Problem 1. (80 points) In this problem:
(i) X is a (continuous) uniform random variable on $[0,4]$.
(ii) Y is an exponential random variable, independent from X, with parameter $\lambda=2$.

1. (10 points) Find the mean and variance of $X-3 Y$.

Massachusetts Institute of Technology
Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Quiz †| Fall 2010)
2. (10 points) Find the probability that $Y \geq X$.
(Let c be the answer to this question.)

Massachusetts Institute of Technology
Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Quiz † | Fall 2010)
3. (10 points) Find the conditional joint PDF of X and Y, given that the event $Y \geq X$ has occurred.
(You may express your answer in terms of the constant c from the previous part.)

Massachusetts Institute of Technology
Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Quiz †| Fall 2010)
4. (10 points) Find the PDF of $Z=X+Y$.

Massachusetts Institute of Technology
Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Quiz †| Fall 2010)
5. (10 points) Provide a fully labeled sketch of the conditional PDF of Z given that $Y=3$.

Massachusetts Institute of Technology
Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Quiz †| Fall 2010)
6. (10 points) Find $\mathbf{E}[Z \mid Y=y]$ and $\mathbf{E}[Z \mid Y]$.

Massachusetts Institute of Technology
Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Quiz † | Fall 2010)
7. (10 points) Find the joint PDF $f_{Z, Y}$ of Z and Y.

Massachusetts Institute of Technology

Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Quiz † | Fall 2010)
8. (10 points) A random variable W is defined as follows. We toss a fair coin (independent of Y). If the result is "heads", we let $W=Y$; if it is tails, we let $W=2+Y$. Find the probability of "heads" given that $W=3$.

Massachusetts Institute of Technology

Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Quiz † | Fall 2010)

Problem 2. (30 points) Let X, X_{1}, X_{2}, \ldots be independent normal random variables with mean 0 and variance 9 . Let N be a positive integer random variable with $\mathbf{E}[N]=2$ and $\mathbf{E}\left[N^{2}\right]=5$. We assume that the random variables $N, X, X_{1}, X_{2}, \ldots$ are independent. Let $S=\sum_{i=1}^{N} X_{i}$.

1. (10 points) If δ is a small positive number, we have $\mathbf{P}(1 \leq|X| \leq 1+\delta) \approx \alpha \delta$, for some constant α. Find the value of α.
2. (10 points) Find the variance of S.

Massachusetts Institute of Technology
Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Quiz † | Fall 2010)
3. (5 points) Are N and S uncorrelated? Justify your answer.
4. (5 points) Are N and S independent? Justify your answer.

MIT OpenCourseWare
http://ocw.mit.edu

6.041SC Probabilistic Systems Analysis and Applied Probability Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

