MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering & Computer Science

6.041/6.431: Probabilistic Systems Analysis (Quiz 2 Solutions | Fall 2010)

3. (10 points) Find the conditional joint PDF of X and Y, given that the event $Y \geq X$ has occurred.

(You may express your answer in terms of the constant c from the previous part.)

Let A be the event that $Y \geq X$. Since X and Y are independent,

$$f_{X,Y|A}(x,y) = \frac{f_{X,Y}(x,y)}{\mathbf{P}(A)} = \frac{f_X(x)f_Y(y)}{\mathbf{P}(A)} \text{ for } (x,y) \in A$$
$$= \begin{cases} \frac{4e^{-2y}}{1-e^{-8}}, & \text{if } 0 \le x \le 4, \ y \ge x \\ 0, & \text{otherwise.} \end{cases}$$

4. (10 points) Find the PDF of Z = X + Y.

Since X and Y are independent, the convolution integral can be used to find $f_Z(z)$.

$$f_Z(z) = \int_{\max(0,z-4)}^{z} \frac{1}{4} 2e^{-2t} dt$$

$$= \begin{cases} 1/4 \cdot (1 - e^{-2z}), & \text{if } 0 \le z \le 4, \\ 1/4 \cdot (e^8 - 1) e^{-2z}, & \text{if } z > 4, \\ 0, & \text{otherwise.} \end{cases}$$

5. (10 points) Provide a fully labeled sketch of the conditional PDF of Z given that Y = 3. Given that Y = 3, Z = X + 3 and the conditional PDF of Z is a shifted version of the PDF of

X. The conditional PDF of Z and its sketch are:

$$f_{Z|\{Y=3\}}(z) \ = \ \left\{ \begin{array}{ll} 1/4, & \text{if } 3 \leq z \leq 7, \\ 0, & \text{otherwise.} \end{array} \right. \qquad \overbrace{ \begin{array}{c} \frac{1}{4} \\ 3 \end{array} }^{f_{Z|Y=3}(z)}$$

6. (10 points) Find $\mathbf{E}[Z \mid Y = y]$ and $\mathbf{E}[Z \mid Y]$.

The conditional PDF $f_{Z|Y=y}(z)$ is a uniform distribution between y and y+4. Therefore,

$$\mathbf{E}[Z \mid Y = y] = y + 2.$$

The above expression holds true for all possible values of y, so

$$\mathbf{E}[Z \mid Y] = Y + 2.$$

7. (10 points) Find the joint PDF $f_{Z,Y}$ of Z and Y.

The joint PDF of Z and Y can be expressed as:

$$\begin{array}{lcl} f_{Z,Y}(z,y) & = & f_Y(y) f_{Z\mid Y}(z\mid y) \\ & = & \left\{ \begin{array}{ll} 1/2 \cdot e^{-2y}, & \text{if } y \geq 0, \ y \leq z \leq y+4, \\ 0, & \text{otherwise.} \end{array} \right. \end{array}$$

1

Massachusetts Institute of Technology

Department of Electrical Engineering & Computer Science

6.041/6.431: Probabilistic Systems Analysis (Quiz 2 Solutions | Fall 2010)

8. (10 points) A random variable W is defined as follows. We toss a fair coin (independent of Y). If the result is "heads", we let W = Y; if it is tails, we let W = 2 + Y. Find the probability of "heads" given that W = 3.

Let X be a Bernoulli random variable for the result of the fair coin where X = 1 if the coin lands "heads". Because the coin is fair, $\mathbf{P}(X = 1) = \mathbf{P}(X = 0) = 1/2$. Furthermore, the conditional PDFs of W given the value of X are:

$$f_{W|X=1}(w) = f_Y(w)$$

 $f_{W|X=0}(w) = f_Y(w-2)$.

Using the appropriate variation of Bayes' Rule:

$$\mathbf{P}(X = 1 \mid W = 3) = \frac{\mathbf{P}(X = 1)f_{W\mid X = 1}(3)}{\mathbf{P}(X = 1)f_{W\mid X = 1}(3) + \mathbf{P}(X = 0)f_{W\mid X = 0}(3)}$$

$$= \frac{\mathbf{P}(X = 1)f_{Y}(3)}{\mathbf{P}(X = 1)f_{Y}(3) + \mathbf{P}(X = 0)f_{Y}(1)}$$

$$= \frac{\mathbf{P}(X = 1)f_{Y}(3)}{\mathbf{P}(X = 1)f_{Y}(3) + \mathbf{P}(X = 0)f_{Y}(1)}$$

$$= \frac{e^{-6}}{e^{-6} + e^{-2}}.$$

Problem 2. (30 points) Let $X, X_1, X_2, ...$ be independent normal random variables with mean 0 and variance 9. Let N be a positive integer random variable with $\mathbf{E}[N] = 2$ and $\mathbf{E}[N^2] = 5$. We assume that the random variables $N, X, X_1, X_2, ...$ are independent. Let $S = \sum_{i=1}^{N} X_i$.

1. (10 points) If δ is a small positive number, we have $\mathbf{P}(1 \le |X| \le 1 + \delta) \approx \alpha \delta$, for some constant α . Find the value of α .

$$\mathbf{P}(1 \le |X| \le 1 + \delta) = 2\mathbf{P}(1 \le X \le 1 + \delta)$$

$$\approx 2f_X(1)\delta.$$

Therefore,

$$\alpha = 2f_X(1)$$

$$= 2 \cdot \frac{1}{\sqrt{9 \cdot 2\pi}} e^{-\frac{1}{2} \cdot \frac{(1-0)^2}{9}}$$

$$= \frac{2}{3\sqrt{2\pi}} e^{-\frac{1}{18}}.$$

2. (10 points) Find the variance of S.

Using the Law of Total Variance,

$$var(S) = \mathbf{E}[var(S \mid N)] + var(\mathbf{E}[S \mid N])$$
$$= \mathbf{E}[9 \cdot N] + var(0 \cdot N)$$
$$= 9\mathbf{E}[N] = 18.$$

Massachusetts Institute of Technology

Department of Electrical Engineering & Computer Science

6.041/6.431: Probabilistic Systems Analysis (Quiz 2 Solutions | Fall 2010)

3. (5 points) Are N and S uncorrelated? Justify your answer.

The covariance of S and N is

$$cov(S, N) = \mathbf{E}[SN] - \mathbf{E}[S]\mathbf{E}[N]$$

$$= \mathbf{E}[\mathbf{E}[SN \mid N]] - \mathbf{E}[\mathbf{E}[S \mid N]]\mathbf{E}[N]$$

$$= \mathbf{E}[\mathbf{E}[\sum_{i=1}^{N} X_i N \mid N]] - \mathbf{E}[\mathbf{E}[\sum_{i=1}^{N} X_i \mid N]]\mathbf{E}[N]$$

$$= \mathbf{E}[X_1]\mathbf{E}[N^2] - \mathbf{E}[X_1]\mathbf{E}[N]$$

$$= 0$$

since the $\mathbf{E}[X_1]$ is 0. Therefore, S and N are uncorrelated.

4. (5 points) Are N and S independent? Justify your answer.

S and N are not independent.

Proof: We have $\operatorname{var}(S \mid N) = 9N$ and $\operatorname{var}(S) = 18$, or, more generally, $f_{S|N}(s \mid n) = N(0, 9n)$ and $f_S(s) = N(0, 18)$ since a sum of an independent normal random variables is also a normal random variable. Furthermore, since $\mathbf{E}[N^2] = 5 \neq (\mathbf{E}[N])^2 = 4$, N must take more than one value and is not simply a degenerate random variable equal to the number 2. In this case, N can take at least one value (with non-zero probability) that satisfies $\operatorname{var}(S \mid N) = 9N \neq \operatorname{var}(S) = 18$ and hence $f_{S|N}(s \mid n) \neq f_S(s)$. Therefore, S and N are not independent.

6.041SC Probabilistic Systems Analysis and Applied Probability Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.