Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis
 (Quiz 2 Solutions | Fall 2010)

3. ($\mathbf{1 0}$ points) Find the conditional joint PDF of X and Y, given that the event $Y \geq X$ has occurred.
(You may express your answer in terms of the constant c from the previous part.)
Let A be the event that $Y \geq X$. Since X and Y are independent,

$$
\begin{aligned}
f_{X, Y \mid A}(x, y) & =\frac{f_{X, Y}(x, y)}{\mathbf{P}(A)}=\frac{f_{X}(x) f_{Y}(y)}{\mathbf{P}(A)} \text { for }(x, y) \in A \\
& = \begin{cases}\frac{4 e^{-2 y}}{1-e^{-8}}, & \text { if } 0 \leq x \leq 4, y \geq x \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

4. (10 points) Find the PDF of $Z=X+Y$.

Since X and Y are independent, the convolution integral can be used to find $f_{Z}(z)$.

$$
\begin{aligned}
f_{Z}(z) & =\int_{\max (0, z-4)}^{z} \frac{1}{4} 2 e^{-2 t} d t \\
& = \begin{cases}1 / 4 \cdot\left(1-e^{-2 z}\right), & \text { if } 0 \leq z \leq 4, \\
1 / 4 \cdot\left(e^{8}-1\right) e^{-2 z}, & \text { if } z>4, \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

5. (10 points) Provide a fully labeled sketch of the conditional PDF of Z given that $Y=3$.

Given that $Y=3, Z=X+3$ and the conditional PDF of Z is a shifted version of the PDF of X. The conditional PDF of Z and its sketch are:

$$
f_{Z \mid\{Y=3\}}(z)=\left\{\begin{array}{ll}
1 / 4, & \text { if } 3 \leq z \leq 7, \\
0, & \text { otherwise. }
\end{array} \quad \begin{array}{l}
\left.\frac{1}{4} \right\rvert\, \\
\end{array}\right.
$$

6. (10 points) Find $\mathbf{E}[Z \mid Y=y]$ and $\mathbf{E}[Z \mid Y]$.

The conditional $\operatorname{PDF} f_{Z \mid Y=y}(z)$ is a uniform distribution between y and $y+4$. Therefore,

$$
\mathbf{E}[Z \mid Y=y]=y+2 .
$$

The above expression holds true for all possible values of y, so

$$
\mathbf{E}[Z \mid Y]=Y+2 .
$$

7. (10 points) Find the joint $\operatorname{PDF} f_{Z, Y}$ of Z and Y.

The joint PDF of Z and Y can be expressed as:

$$
\begin{aligned}
f_{Z, Y}(z, y) & =f_{Y}(y) f_{Z \mid Y}(z \mid y) \\
& = \begin{cases}1 / 2 \cdot e^{-2 y}, & \text { if } y \geq 0, y \leq z \leq y+4, \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis
 (Quiz 2 Solutions | Fall 2010)

8. ($\mathbf{1 0}$ points) A random variable W is defined as follows. We toss a fair coin (independent of Y). If the result is "heads", we let $W=Y$; if it is tails, we let $W=2+Y$. Find the probability of "heads" given that $W=3$.
Let X be a Bernoulli random variable for the result of the fair coin where $X=1$ if the coin lands "heads". Because the coin is fair, $\mathbf{P}(X=1)=\mathbf{P}(X=0)=1 / 2$. Furthermore, the conditional PDFs of W given the value of X are:

$$
\begin{aligned}
f_{W \mid X=1}(w) & =f_{Y}(w) \\
f_{W \mid X=0}(w) & =f_{Y}(w-2) .
\end{aligned}
$$

Using the appropriate variation of Bayes' Rule:

$$
\begin{aligned}
\mathbf{P}(X=1 \mid W=3) & =\frac{\mathbf{P}(X=1) f_{W \mid X=1}(3)}{\mathbf{P}(X=1) f_{W \mid X=1}(3)+\mathbf{P}(X=0) f_{W \mid X=0}(3)} \\
& =\frac{\mathbf{P}(X=1) f_{Y}(3)}{\mathbf{P}(X=1) f_{Y}(3)+\mathbf{P}(X=0) f_{Y}(1)} \\
& =\frac{\mathbf{P}(X=1) f_{Y}(3)}{\mathbf{P}(X=1) f_{Y}(3)+\mathbf{P}(X=0) f_{Y}(1)} \\
& =\frac{e^{-6}}{e^{-6}+e^{-2}} .
\end{aligned}
$$

Problem 2. (30 points) Let X, X_{1}, X_{2}, \ldots be independent normal random variables with mean 0 and variance 9 . Let N be a positive integer random variable with $\mathbf{E}[N]=2$ and $\mathbf{E}\left[N^{2}\right]=5$. We assume that the random variables $N, X, X_{1}, X_{2}, \ldots$ are independent. Let $S=\sum_{i=1}^{N} X_{i}$.

1. (10 points) If δ is a small positive number, we have $\mathbf{P}(1 \leq|X| \leq 1+\delta) \approx \alpha \delta$, for some constant α. Find the value of α.

$$
\begin{aligned}
\mathbf{P}(1 \leq|X| \leq 1+\delta) & =2 \mathbf{P}(1 \leq X \leq 1+\delta) \\
& \approx 2 f_{X}(1) \delta .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\alpha & =2 f_{X}(1) \\
& =2 \cdot \frac{1}{\sqrt{9 \cdot 2 \pi}} e^{-\frac{1}{2} \cdot \frac{(1-0)^{2}}{9}} \\
& =\frac{2}{3 \sqrt{2 \pi}} e^{-\frac{1}{18}} .
\end{aligned}
$$

2. (10 points) Find the variance of S.

Using the Law of Total Variance,

$$
\begin{aligned}
\operatorname{var}(S) & =\mathbf{E}[\operatorname{var}(S \mid N)]+\operatorname{var}(\mathbf{E}[S \mid N]) \\
& =\mathbf{E}[9 \cdot N]+\operatorname{var}(0 \cdot N) \\
& =9 \mathbf{E}[N]=18 .
\end{aligned}
$$

Massachusetts Institute of Technology

Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis (Quiz 2 Solutions| Fall 2010)
3. (5 points) Are N and S uncorrelated? Justify your answer.

The covariance of S and N is

$$
\begin{aligned}
\operatorname{cov}(S, N) & =\mathbf{E}[S N]-\mathbf{E}[S] \mathbf{E}[N] \\
& =\mathbf{E}[\mathbf{E}[S N \mid N]]-\mathbf{E}[\mathbf{E}[S \mid N]] \mathbf{E}[N] \\
& =\mathbf{E}\left[\mathbf{E}\left[\sum_{i=1}^{N} X_{i} N \mid N\right]\right]-\mathbf{E}\left[\mathbf{E}\left[\sum_{i=1}^{N} X_{i} \mid N\right]\right] \mathbf{E}[N] \\
& =\mathbf{E}\left[X_{1}\right] \mathbf{E}\left[N^{2}\right]-\mathbf{E}\left[X_{1}\right] \mathbf{E}[N] \\
& =0
\end{aligned}
$$

since the $\mathbf{E}\left[X_{1}\right]$ is 0 . Therefore, S and N are uncorrelated.
4. (5 points) Are N and S independent? Justify your answer.
S and N are not independent.
Proof: We have $\operatorname{var}(S \mid N)=9 N$ and $\operatorname{var}(S)=18$, or, more generally, $f_{S \mid N}(s \mid n)=N(0,9 n)$ and $f_{S}(s)=N(0,18)$ since a sum of an independent normal random variables is also a normal random variable. Furthermore, since $\mathbf{E}\left[N^{2}\right]=5 \neq(\mathbf{E}[N])^{2}=4, N$ must take more than one value and is not simply a degenerate random variable equal to the number 2 . In this case, N can take at least one value (with non-zero probability) that satisfies $\operatorname{var}(S \mid N)=9 N \neq \operatorname{var}(S)=18$ and hence $f_{S \mid N}(s \mid n) \neq f_{S}(s)$. Therefore, S and N are not independent.

MIT OpenCourseWare
http://ocw.mit.edu

6.041SC Probabilistic Systems Analysis and Applied Probability Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

