LECTURE 13

The Bernoulli process

- Readings: Section 6.1

Lecture outline

- Definition of Bernoulli process
- Random processes
- Basic properties of Bernoulli process
- Distribution of interarrival times
- The time of the k th success
- Merging and splitting

The Bernoulli process

- A sequence of independent Bernoulli trials
- At each trial, i :
$-\mathbf{P}($ success $)=\mathbf{P}\left(X_{i}=1\right)=p$
$-\mathbf{P}($ failure $)=\mathbf{P}\left(X_{i}=0\right)=1-p$
- Examples:
- Sequence of lottery wins/Iosses
- Sequence of ups and downs of the Dow Jones
- Arrivals (each second) to a bank
- Arrivals (at each time slot) to server

Random processes

- First view:
sequence of random variables X_{1}, X_{2}, \ldots
- $\mathrm{E}\left[X_{t}\right]=$
- $\operatorname{Var}\left(X_{t}\right)=$
- Second view:
what is the right sample space?
- $\mathbf{P}\left(X_{t}=1\right.$ for all $\left.t\right)=$
- Random processes we will study:
- Bernoulli process (memoryless, discrete time)
- Poisson process
(memoryless, continuous time)
- Markov chains
(with memory/dependence across time)

Number of successes S in n time slots

- $\mathbf{P}(S=k)=$
- $\mathrm{E}[S]=$
- $\operatorname{Var}(S)=$

Interarrival times

- T_{1} : number of trials until first success
$-\mathbf{P}\left(T_{1}=t\right)=$
- Memoryless property
$-\mathrm{E}\left[T_{1}\right]=$
$-\operatorname{Var}\left(T_{1}\right)=$
- If you buy a lottery ticket every day, what is the distribution of the length of the first string of losing days?

Time of the k th arrival

- Given that first arrival was at time t i.e., $T_{1}=t$: additional time, T_{2}, until next arrival
- has the same (geometric) distribution
- independent of T_{1}
- Y_{k} : number of trials to k th success
$-\mathrm{E}\left[Y_{k}\right]=$
$-\operatorname{Var}\left(Y_{k}\right)=$
$-\mathbf{P}\left(Y_{k}=t\right)=$

Splitting of a Bernoulli Process

(using independent coin flips)

yields Bernoulli processes

Merging of Indep. Bernoulli Processes

yields a Bernoulli process
(collisions are counted as one arrival)

MIT OpenCourseWare
http://ocw.mit.edu

6.041SC Probabilistic Systems Analysis and Applied Probability

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

