Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)

Recitation 14 Solutions
 October 26, 2010

1. (a) Let $X=$ (time between successive mosquito bites) $=$ (time until the next mosquito bite).

The mosquito bites occur according to a Bernoulli process with parameter $p=0.5 \cdot 0.2=0.1$. X is a geometric random variable, so, $\mathbf{E}[X]=\frac{1}{p}=\frac{1}{0.1}=10$.

$$
\operatorname{var}(X)=\frac{1-p}{p^{2}}=\frac{1-0.1}{0.1^{2}}=90 .
$$

(b) Mosquito bites occur according to a Bernoulli process with parameter $p=0.1$. Tick bites occur according to another independent Bernoulli process with parameter $q=0.1 \cdot 0.7=$ 0.07. Bug bites (mosquito or tick) occur according to a merged Bernoulli process from the mosquito and tick processes. Therefore, the probability of success at any time point for the merged Bernoulli process is $r=p+q-p q=0.1+0.07-0.1 \cdot 0.07=0.163$. Let Y be the time between successive bug bites. As before, Y is a geometric random variable, so $\mathbf{E}[Y]=\frac{1}{r}=\frac{1}{0.163} \approx 6.135$.

$$
\operatorname{var}(Y)=\frac{1-r}{r^{2}}=\frac{1-0.163}{0.163^{2}} \approx 31.503
$$

2. (a) In this case, since the trials are independent, the given information is irrelevant.
\mathbf{P} (next 2 trials result in 3 tails $)=\left(\frac{1}{8}\right)^{2}=\frac{1}{64}$.
(b) i. The second order Pascal PMF for random variable N, as defined in the text, is the probability of the second success comes on the $n^{t h}$ trial. Thus, the random variable, K, is a shifted version of the second order Pascal PMF, i.e. $K=N-1$. So, the probability that 1 success comes in the first k trials, where the next trial will result in the second success, can be expressed as:

$$
p_{K}(k)=\binom{k}{1}\left(\frac{1}{4}\right)^{2}\left(\frac{3}{4}\right)^{k-1}, \quad k \geq 1 .
$$

ii. The number of tails before the first success, M, can be written as a random sum:

$$
M=X_{1}+X_{2}+\cdots+X_{N},
$$

where X_{i} is the number of tails that occur on (unsuccessful) trial i, and N is the number of unsuccessful trials (i.e. trials before the first success). We notice that X is equally likely to be either 1 or 2 , and that N is a shifted geometric: $N=R-1$, where R is a geometric random variable with parameter $\frac{1}{4}$. Now we can apply our random sum formulae.

$$
\begin{gathered}
E[M]=E[X] E[N]=\left(\frac{3}{2}\right)(4-1)=\frac{9}{2} \\
\operatorname{var}(M)=E[N] \operatorname{var}(X)+(E[X])^{2} \operatorname{var}(N)=(4-1)\left(\frac{1}{4}\right)+\left(\frac{3}{2}\right)^{2}(12)=\frac{111}{4} .
\end{gathered}
$$

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)
(c) N, the number of trials in Bob's experiment, can be expressed as the sum of 3 independent random variables, X, Y, and $Z . X$ is the number of trials until Bob removes the first coin, Y the number of additional trials until he removes the second coin, and Z the additional number until he removes the third coin. We see that X is a geometric random variable with parameter $\frac{1}{8}, Y$ is geometric with parameter $\frac{1}{4}$, and Z geometric with parameter $\frac{1}{2}$. Hence,

$$
E[N]=E[X]+E[Y]+E[Z]=8+4+2=14 .
$$

3. Let M be the total number of draws you make until you have signed all n papers. Let T_{i} be the number of draws you make until drawing the next unsigned paper after having signed i papers. Then $M=T_{0}+\cdots+T_{n-1}$.
We can view the process of selecting the next unsigned paper after having signed i papers as a sequence of independent Bernoulli trials with probability of success $p_{i}=\frac{n-i}{n}$, since there are $n-i$ unsigned papers out of a total of n papers and receiving any paper is equally likely in a particular draw. The PMF governing the number of attempts we make until we succeed in drawing the next unsigned paper after having signed i papers is geometric. More concretely, the probability that it takes k tries to draw the next unsigned paper after having signed i papers is

$$
\mathbf{P}\left(T_{i}=k\right)=\left(1-p_{i}\right)^{k-1} p_{i} .
$$

With this model, the expected value of M, the number of draws you make until you sign all n papers is:

$$
\mathbf{E}[M]=\mathbf{E}\left[\sum_{i=0}^{n-1} T_{i}\right]=\sum_{i=0}^{n-1} \mathbf{E}\left[T_{i}\right]=\sum_{i=0}^{n-1} \frac{n}{n-i}=n \sum_{k=1}^{n} \frac{1}{k} .
$$

For large n, this is on the order of: $n \int_{1}^{n} \frac{1}{x} d x=n \log n$.

MIT OpenCourseWare
http://ocw.mit.edu

6.041SC Probabilistic Systems Analysis and Applied Probability

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

