Massachusetts Institute of Technology

Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

Recitation 15 Solutions

October 28, 2010

1. (a) Let X be the time until the first bulb failure. Let A (respectively, B) be the event that the frist bulb is of type A (respectively, B). Since the two bulb types are equally likely, the total expectation theorem yields

$$
\mathbf{E}[X]=\mathbf{E}[X \mid A] \mathbf{P}(A)+\mathbf{E}[X \mid B] \mathbf{P}(B)=1 \cdot \frac{1}{2}+\frac{1}{3} \cdot \frac{1}{2}=\frac{2}{3} .
$$

(b) Let D be the event of no bulb failures before time t. Using the total probability theorem, and the exponential distributions for bulbs of the two types, we obtain

$$
\mathbf{P}(D)=\mathbf{P}(D \mid A) \mathbf{P}(A)+\mathbf{P}(D \mid B) \mathbf{P}(B)=\frac{1}{2} e^{-t}+\frac{1}{2} e^{-3 t}
$$

(c) We have

$$
\mathbf{P}(A \mid D)=\frac{\mathbf{P}(A \cap D)}{\mathbf{P}(D)}=\frac{\frac{1}{2} e^{-t}}{\frac{1}{2} e^{-t}+\frac{1}{2} e^{-3 t}}=\frac{1}{1+e^{-2 t}}
$$

(d) The lifetime of the first type-A bulb is X_{A}, with PDF given by:

$$
f_{X_{A}}(x)= \begin{cases}e^{-x} & x \geq 0 \\ 0 & \text { elsewhere }\end{cases}
$$

Let Y be the total lifetime of two type-B bulbs. Because the lifetime of each type-B bulb is exponential with $\lambda=3$, the sum Y has an Erlang distribution of order 2 with $\lambda=3$. Its PDF is:

$$
\begin{gathered}
f_{Y}(y)= \begin{cases}9 y e^{-3 y} & y \geq 0 \\
0 & \text { elsewhere }\end{cases} \\
P(G)=P\left(Y \geq X_{A}\right) \\
=\int_{-\infty}^{\infty} f_{Y}(y) \int_{-\infty}^{y} f_{X_{A}}(x) d x d y \\
=\int_{0}^{\infty} 9 y e^{-3 y} \int_{0}^{y} e^{-x} d x d y=9 \int_{0}^{\infty} y e^{-3 y}-\left.e^{-x}\right|_{x=0} ^{x=y} d y \\
=9 \int_{0}^{\infty} y e^{-3 y}\left(1-e^{-y}\right) d y=9 \int_{0}^{\infty} y e^{-3 y}-y e^{-4 y} d y \\
=\left.9\left(-\frac{1}{3} y e^{-3 y}-\frac{1}{9} e^{-3 y}+\frac{1}{4} y e^{-4 y}+\frac{1}{16} e^{-4 y}\right)\right|_{y=0} ^{y=\infty} \\
=9\left(\frac{1}{9}-\frac{1}{16}\right)=\frac{7}{16}
\end{gathered}
$$

A simpler solution involving no integrals is as follows:
The bulb failure times of interest (1st type- $A, 2$ nd type- B) may be thought of as the arrival

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)
times of two independent Poisson processes of rate $\lambda_{A}=1$ and $\lambda_{B}=3$. We may imagine that these two processes were split from a joint Poisson process of rate $\lambda_{A}+\lambda_{B}$, where the splitting probabilities for each arrival are $P(A)=\frac{\lambda_{A}}{\lambda_{A}+\lambda_{B}}=1 / 4$ to process A and $P(B)=\frac{\lambda_{B}}{\lambda_{A}+\lambda_{B}}=3 / 4$ to process B. Now we may just focus on whether arrivals to the joint process go to process A or to process B. Each arrival to the joint process corresponds to an independent trial. There are two possible outcomes: the arrival is handed to process A with probability $P(A)$ or the arrival is handed to process B with probability $P(B)$. Then our event of interest occurs when either the first arrival goes to A, or the first arrival goes to B followed by the second going to A . So the corresponding probability is

$$
P(A \text { or } B A)=P(A)+P(B A)=P(A)+P(B) P(A)=7 / 16
$$

(e) Let V be the total period of illumination provided by type- B bulbs while the process is in operation. Let N be the number of light bulbs, out of the first 12 , that are of type-B. Let X_{i} be the period of illumination from the i th type-B bulb. We then have $V=Y_{1}+\cdots Y_{N}$. Note that N is a binomial random variable, with parameters $n=12$ and $p=1 / 2$, so that

$$
\mathbf{E}[N]=6, \quad \operatorname{var}(N)=12 \cdot \frac{1}{2} \cdot \frac{1}{2}=3
$$

Furthermore, $\mathbf{E}\left[X_{i}\right]=1 / 3$ and $\operatorname{var}\left(X_{i}\right)=1 / 9$. Using the formulas for the mean and variance of the sum of a random number of random variables, we obtain

$$
\mathbf{E}[V]=\mathbf{E}[N] \mathbf{E}\left[X_{i}\right]=2
$$

and

$$
\operatorname{var}(V)=\operatorname{var}\left(X_{i}\right) \mathbf{E}[N]+\left(\mathbf{E}\left[X_{i}\right]\right)^{2} \operatorname{var}(N)=\frac{1}{9} \cdot 6+\frac{1}{9} \cdot 3=1
$$

(f) Using the notation in parts (a)-(c), and the result of part (c), we have

$$
\begin{aligned}
\mathbf{E}[T \mid D] & =t+\mathbf{E}[T-t \mid D \cap A] \mathbf{P}(A \mid D)+\mathbf{E}[T-t \mid D \cap B] \mathbf{P}(B \mid D) \\
& =t+1 \cdot \frac{1}{1+e^{-2 t}}+\frac{1}{3}\left(1-\frac{1}{1+e^{-2 t}}\right) \\
& =t+\frac{1}{3}+\frac{2}{3} \cdot \frac{1}{1+e^{-2 t}}
\end{aligned}
$$

2. (a) The total arrival process corresponds to the merging of two independent Poisson processes, and is therefore Poisson with rate $\lambda=\lambda_{A}+\lambda_{B}=7$. Thus, the number N of jobs that arrive in a given three-minute interval is a Poisson random variable, with $\mathbf{E}[N]=3 \lambda=21$, $\operatorname{var}(N)=21$, and PMF

$$
p_{N}(n)=\frac{(21)^{n} e^{-21}}{n!}, \quad n=0,1,2, \ldots
$$

(b) Each of these 10 jobs has probability $\lambda_{A} /\left(\lambda_{A}+\lambda_{B}\right)=3 / 7$ of being type A, independently of the others. Thus, the binomial PMF applies and the desired probability is equal to

$$
\binom{10}{3}\left(\frac{3}{7}\right)^{3}\left(\frac{4}{7}\right)^{7}
$$

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)
(c) Each future arrival is of type A with probability $\lambda_{A} /\left(\lambda_{A}+\lambda_{B}\right)=3 / 7$ of being type A, independently of the others. Thus, the number K of arrivals until the first type A arrival is geometric with parameter $3 / 7$. The number of type B arrivals before the first type A arrival is equal to $K-1$, and its PMF is similar to a geometric, except that it is shifted by one unit to the left. In particular,

$$
p_{K}(k)=\left(\frac{3}{7}\right)\left(\frac{4}{7}\right)^{k}, \quad k=0,1,2, \ldots
$$

3. The event $\{X<Y<Z\}$ can be expressed as $\{X<\min \{Y, Z\}\} \cap\{Y<Z\}$. Let Y and Z be the 1st arrival times of two independent Poisson processes with rates μ and ν. By merging the two processes, it should be clear that $Y<Z$ if and only if the first arrival of the merged process comes from the original process with rate μ, and thus

$$
\mathbf{P}(Y<Z)=\frac{\mu}{\mu+\nu} .
$$

Let X be the 1st arrival time of a third independent Poisson process with rate λ. Now $\{X<$ $\min \{Y, Z\}\}$ if and only if the first arrival of the Poisson process obtained by merging the two processes with rates λ and $\mu+\nu$ comes from the original process with rate λ, and thus

$$
\mathbf{P}(X<\min \{Y, Z\})=\frac{\lambda}{\lambda+\mu+\nu} .
$$

Note that the event $\{X<\min \{Y, Z\}\}$ is independent of the event $\{Y<Z\}$, as the time of the first arrival of the merged process with rate $\mu+\nu$ is independent of whether that first arrival comes from the process with rate μ or the process with rate ν. Hence,

$$
\begin{aligned}
\mathbf{P}(X<Y<Z) & =\mathbf{P}(X<\min \{Y, Z\}) \cdot \mathbf{P}(Y<Z) \\
& =\frac{\lambda \mu}{(\lambda+\mu+\nu)(\mu+\nu)} .
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.041SC Probabilistic Systems Analysis and Applied Probability

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

