LECTURE 15

Poisson process - II

- Readings: Finish Section 6.2.
- Review of Poisson process
- Merging and splitting
- Examples
- Random incidence

Review

- Defining characteristics
- Time homogeneity: $P(k, \tau)$
- Independence
- Small interval probabilities (small δ):

$$
P(k, \delta) \approx \begin{cases}1-\lambda \delta, & \text { if } k=0 \\ \lambda \delta, & \text { if } k=1 \\ 0, & \text { if } k>1\end{cases}
$$

- N_{τ} is a Poisson r.v., with parameter $\lambda \tau$:

$$
P(k, \tau)=\frac{(\lambda \tau)^{k} e^{-\lambda \tau}}{k!}, \quad k=0,1, \ldots
$$

$\mathrm{E}\left[N_{\tau}\right]=\operatorname{var}\left(N_{\tau}\right)=\lambda \tau$

- Interarrival times $(k=1)$: exponential:
$f_{T_{1}}(t)=\lambda e^{-\lambda t}, \quad t \geq 0, \quad \mathbf{E}\left[T_{1}\right]=1 / \lambda$
- Time Y_{k} to k th arrival: Erlang (k) :

$$
f_{Y_{k}}(y)=\frac{\lambda^{k} y^{k-1} e^{-\lambda y}}{(k-1)!}, \quad y \geq 0
$$

Poisson fishing

- Assume: Poisson, $\lambda=0.6 /$ hour.
- Fish for two hours.
- if no catch, continue until first catch.
a) \mathbf{P} (fish for more than two hours $)=$
b) \mathbf{P} (fish for more than two and less than five hours)=
c) $\mathbf{P}($ catch at least two fish $)=$
d) $E[$ number of fish $]=$
e) $E[$ future fishing time \mid fished for four hours] $=$
f) $E[$ total fishing time $]=$

Merging Poisson Processes (again)

- Merging of independent Poisson processes is Poisson

- What is the probability that the next arrival comes from the first process?

Light bulb example

- Each light bulb has independent, exponential (λ) lifetime
- Install three light bulbs.

Find expected time until last light bulb dies out.

Splitting of Poisson processes

- Assume that email traffic through a server is a Poisson process.
Destinations of different messages are independent.

- Each output stream is Poisson.

Random incidence for Poisson

- Poisson process that has been running forever
- Show up at some "random time" (really means "arbitrary time")

- What is the distribution of the length of the chosen interarrival interval?

Random incidence in "renewal processes"

- Series of successive arrivals
- i.i.d. interarrival times (but not necessarily exponential)

- Example:

Bus interarrival times are equally likely to be 5 or 10 minutes

- If you arrive at a "random time":
- what is the probability that you selected a 5 minute interarrival interval?
- what is the expected time to next arrival?

MIT OpenCourseWare
http://ocw.mit.edu

6.041SC Probabilistic Systems Analysis and Applied Probability

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

