LECTURE 17

Markov Processes – II

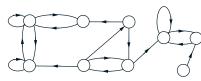
• Readings: Section 7.3

Lecture outline

- Review
- Steady-State behavior
- Steady-state convergence theorem
- Balance equations
- Birth-death processes

Review

- Discrete state, discrete time, time-homogeneous
- Transition probabilities p_{ij}
- Markov property
- $r_{ij}(n) = P(X_n = j | X_0 = i)$
- Key recursion: $r_{ij}(n) = \sum_{k} r_{ik}(n-1)p_{kj}$



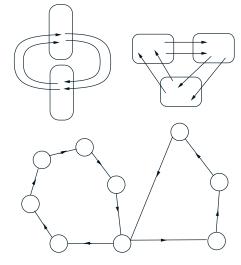
- $P(X_1 = 2, X_2 = 6, X_3 = 7 | X_0 = 1) =$
- $P(X_4 = 7 | X_0 = 2) =$

Recurrent and transient states

- State *i* is recurrent if: starting from *i*, and from wherever you can go, there is a way of returning to *i*
- If not recurrent, called transient
- Recurrent class: collection of recurrent states that "communicate" to each other and to no other state

Periodic states

 The states in a recurrent class are periodic if they can be grouped into d > 1 groups so that all transitions from one group lead to the next group



Steady-State Probabilities

- Do the r_{ij}(n) converge to some π_j? (independent of the initial state i)
- Yes, if:
- recurrent states are all in a single class, and
- single recurrent class is not periodic
- Assuming "yes," start from key recursion

$$r_{ij}(n) = \sum_{k} r_{ik}(n-1)p_{kj}$$

– take the limit as $n \to \infty$

$$\pi_j = \sum_k \pi_k p_{kj}, \qquad \text{for all } j$$

Additional equation:

0.5

$$\sum_{j} \pi_{j} = 1$$

Example

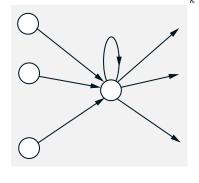
0.5

0.2

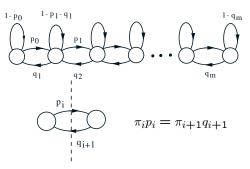
0.8

$$\pi_j = \sum_k \pi_k p_{kj}$$

- (Long run) frequency of being in j: π_j
- Frequency of transitions $k \rightarrow j$: $\pi_k p_{kj}$
- Frequency of transitions into j: $\sum_{k} \pi_k p_{kj}$



Birth-death processes



• Special case: $p_i = p$ and $q_i = q$ for all i $\rho = p/q = load$ factor

$$\pi_{i+1} = \pi_i \frac{p}{q} = \pi_i \rho$$
$$\pi_i = \pi_0 \rho^i, \qquad i = 0, 1, \dots, m$$

• Assume p < q and $m \approx \infty$

$$\pi_0 = 1 -
ho$$

 $\mathrm{E}[X_n] = rac{
ho}{1 -
ho}$ (in steady-state)

6.041SC Probabilistic Systems Analysis and Applied Probability Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.