Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science

6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

Tutorial 11 Solutions

1. (a) The LMS estimator is

$$
g(x)=\mathbf{E}[Y \mid X]= \begin{cases}\frac{1}{2} X & 0 \leq X<1 \\ X-\frac{1}{2} & 1 \leq X \leq 2 \\ \text { Undefined } & \text { Otherwise }\end{cases}
$$

(b) If $x \in[0,1]$, the conditional PDF of Y is uniform over the interval $[0, x]$, and

$$
\mathbf{E}\left[(Y-g(X))^{2} \mid X=x\right]=\frac{x^{2}}{12}
$$

Similarly, if $x \in[1,2]$, the conditional PDF of Y is uniform over [$1-x, x]$, and

$$
\mathbf{E}\left[(Y-g(X))^{2} \mid X=x\right]=1 / 12
$$

(c) The expectations $\mathbf{E}\left[(Y-g(X))^{2}\right]$ and $\mathbf{E}[\operatorname{var}(Y \mid X)]$ are equal because by the law of iterated expectations,

$$
\mathbf{E}\left[(Y-g(X))^{2}\right]=\mathbf{E}\left[\mathbf{E}\left[(Y-g(X))^{2} \mid X\right]\right]=\mathbf{E}[\operatorname{var}(Y \mid X)] .
$$

Recall from part (b) that

$$
\operatorname{var}(Y \mid X=x)=\left\{\begin{array}{cl}
\frac{x^{2}}{12} & 0 \leq x<1, \\
\frac{1}{12} & 1 \leq x \leq 2 .
\end{array}\right.
$$

It follows that

$$
\mathbf{E}[\operatorname{var}(Y \mid X)]=\int_{x} \operatorname{var}(Y \mid X=x) f_{X}(x) d x=\int_{0}^{1} \frac{x^{2}}{12} \cdot \frac{2}{3} x d x+\int_{1}^{2} \frac{1}{12} \cdot \frac{2}{3} d x=\frac{5}{72} .
$$

Note that

$$
f_{X}(x)= \begin{cases}2 x / 3 & 0 \leq x<1 \\ 2 / 3 & 1 \leq x \leq 2\end{cases}
$$

(d) The linear LMS estimator is

$$
L(X)=\mathbf{E}[Y]+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}[X-\mathbf{E}[X]] .
$$

In order to calculate $\operatorname{var}(X)$ we first calculate $\mathbf{E}\left[X^{2}\right]$ and $\mathbf{E}[X]^{2}$.

$$
\begin{aligned}
\mathbf{E}\left[X^{2}\right] & =\int_{0}^{2} x^{3} \frac{2}{3} d x+\int_{1}^{2} x^{2} \frac{2}{3} d x \\
& =\frac{31}{18} \\
\mathbf{E}[X] & =\int_{0}^{2} x^{2} \frac{2}{3} d x+\int_{1}^{2} x \frac{2}{3} d x \\
& =\frac{11}{9}
\end{aligned}
$$

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)
$\operatorname{var}(X)=\mathbf{E}\left[X^{2}\right]-\mathbf{E}[X]^{2}=\frac{37}{162}$.

$$
\mathbf{E}[Y]=\int_{0}^{1} \int_{0}^{x} \frac{2}{3} y d y d x+\int_{1}^{2} \int_{x-1}^{x} \frac{2}{3} y d y d x=\frac{1}{9}+\frac{2}{3}=\frac{7}{9}
$$

To determine $\operatorname{cov}(X, Y)$ we need to evaluate $\mathbf{E}[X Y]$.

$$
\begin{aligned}
\mathbf{E}[Y X] & =\int_{x} \int_{y} x y f_{X, Y}(x, y) d y d x \\
& =\int_{0}^{1} \int_{0}^{x} y x \frac{2}{3} d y d x+\int_{1}^{2} \int_{x-1}^{x} y x \frac{2}{3} d y d x \\
& =\frac{41}{36}
\end{aligned}
$$

Therefore $\operatorname{cov}(X, Y)=\mathbf{E}[X Y]-\mathbf{E}[X] \mathbf{E}[Y]=\frac{61}{324}$. Therefore,

$$
L(X)=\frac{7}{9}+\frac{61}{74}\left[X-\frac{11}{9}\right]
$$

(e) The LMS estimator is the one that minimizes mean squared error (among all estimators of Y based on X). The linear LMS estimator, therefore, cannot perform better than the LMS estimator, i.e., we expect $\mathbf{E}\left[(Y-L(X))^{2}\right] \geq \mathbf{E}\left[(Y-g(X))^{2}\right]$. In fact,

$$
\begin{aligned}
\mathbf{E}\left[(Y-L(X))^{2}\right] & =\sigma_{Y}^{2}\left(1-\rho^{2}\right) \\
& =\sigma_{Y}^{2}\left(1-\frac{\operatorname{cov}(X, Y)^{2}}{\sigma_{X}^{2} \sigma_{Y}^{2}}\right) \\
& =\frac{37}{162}\left(1-\left(\frac{61}{74}\right)^{2}\right) \\
& =0.073 \geq \frac{5}{72}
\end{aligned}
$$

(f) For a single observation x of X, the MAP estimate is not unique since all possible values of Y for this x are equally likely. Therefore, the MAP estimator does not give meaningful results.
2. (a) X is a binomial random variable with parameters $n=3$ and given the probability p that a single bit is flipped in a transmission over the noisy channel:

$$
p_{X}(k ; p)=\left\{\begin{array}{cc}
\binom{3}{k} p^{k}(1-p)^{3-k}, & k=0,1,2,3 \\
0 & \text { o.w. }
\end{array}\right.
$$

(b) To derive the ML estimator for p based on X_{1}, \ldots, X_{n}, the numbers of bits flipped in the first n three-bit messages, we need to find the value of p that maximizes the likelihood function:

$$
\hat{p}_{n}=\arg \max _{p} p_{X_{1}, \ldots, X_{n}}\left(k_{1}, k_{2}, \ldots, k_{n} ; p\right)
$$

Since the X_{i} 's are independent, the likelihood function simplifies to:

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)

$$
p_{X_{1}, \ldots, X_{n}}\left(k_{1}, k_{2}, \ldots, k_{n} ; p\right)=\Pi_{i=1}^{n} p_{X_{i}}\left(k_{i} ; p\right)=\Pi_{i=1}^{n}\binom{3}{k_{i}} p^{k_{i}}(1-p)^{3-k_{i}}
$$

The log-likelihood function is given by

$$
\log \left(p_{X_{1}, \ldots, X_{n}}\left(k_{1}, k_{2}, \ldots, k_{n} ; p\right)\right)=\sum_{i=1}^{n}\left(k_{i} \log (p)+\left(3-k_{i}\right) \log (1-p)+\log \binom{3}{k_{i}}\right)
$$

We then maximize the log-likelihood function with respect to p :

$$
\begin{aligned}
\frac{1}{p}\left(\sum_{i=1}^{n} k_{i}\right)-\frac{1}{1-p}\left(\sum_{i=1}^{n}\left(3-k_{i}\right)\right) & =0 \\
\left(3 n-\sum_{i=1}^{n} k_{i}\right) p & =\left(\sum_{i=1}^{n} k_{i}\right)(1-p) \\
\hat{p}_{n}=\frac{1}{3 n} \sum_{i=1}^{n} k_{i} &
\end{aligned}
$$

This yields the ML estimator:

$$
\hat{P}_{n}=\frac{1}{3 n} \sum_{i=1}^{n} X_{i}
$$

(c) The estimator is unbiased since:

$$
\begin{aligned}
\mathbf{E}_{p}\left[\hat{P}_{n}\right] & =\frac{1}{3 n} \sum_{i=1}^{n} \mathbf{E}_{p}\left[X_{i}\right] \\
& =\frac{1}{3 n} \sum_{i=1}^{n} 3 p \\
& =p
\end{aligned}
$$

(d) By the weak law of large numbers, $\frac{1}{n} \sum_{i=1}^{n} X_{i}$ converges in probability to $\mathbf{E}_{p}\left[X_{i}\right]=3 p$, and therefore $\hat{P}_{n}=\frac{1}{3 n} \sum_{i=1}^{n} X_{i}$ converges in probability to p. Thus \hat{P}_{n} is consistent.
(e) Sending 3 bit messages instead of 1 bit messages does not affect the ML estimate of p. To see this, let Y_{i} be a Bernoulli RV which takes the value 1 if the i th bit is flipped (with probability p), and let $m=3 n$ be the total number of bits sent over the channel. The ML estimate of p is then

$$
\hat{P}_{n}=\frac{1}{3 n} \sum_{i=1}^{n} X_{i}=\frac{1}{m} \sum_{i=1}^{m} Y_{i} .
$$

Using the central limit theorem, \hat{P}_{n} is approximately a normal RV for large n. An approximate 95% confidence interval for p is then,

$$
\left[\hat{P}_{n}-1.96 \sqrt{\frac{v}{m}}, \hat{P}_{n}+1.96 \sqrt{\frac{v}{m}}\right]
$$

Massachusetts Institute of Technology

Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)
where v is the variance of Y_{i}.
As suggested by the question, we estimate the unknown variance v by the convervative upper bound of $1 / 4$. We are also give that $n=100$ and the number of bits flipped is 20 , yielding $\hat{P}_{n}=\frac{2}{30}$. Thus, an approximate 95% confidence interval is $[0.01,0.123]$.
(f) Other estimates for the variance are the sample variance and the estimate $\hat{P}_{n}\left(1-\hat{P}_{n}\right)$. They potentially result in narrower confidence intervals than the conservative variance estimate used in part (e).

MIT OpenCourseWare
http://ocw.mit.edu

6.041SC Probabilistic Systems Analysis and Applied Probability
 Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

