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PROFESSOR: It involves real phenomena out there. So we have real stuff that happens. So it 

might be an arrival process to a bank that we're trying to model.  

This is a reality, but this is what we have been doing so far. We have been playing with models 

of probabilistic phenomena. And somehow we need to tie the two together.  

The way these are tied is that we observe the real world and this gives us data. And then based 

on these data, we try to come up with a model of what exactly is going on. For example, for an 

arrival process, you might ask the model in question, is my arrival process Poisson or is it 

something different? If it is Poisson, what is the rate of the arrival process? Once you come up 

with your model and you come up with the parameters of the model, then you can use it to make 

predictions about reality or to figure out certain hidden things, certain hidden aspects of reality, 

that you do not observe directly, but you try to infer what they are. So that's where the usefulness 

of the model comes in.  

Now this field is of course tremendously useful. And it shows up pretty much everywhere. So we 

talked about the polling examples in the last couple of lectures. This is, of course, a real 

application.  

You sample and on the basis of the sample that you have, you try to make some inferences about, 

let's say, the preferences in a given population. Let's say in the medical field, you want to try 

whether a certain drug makes a difference or not. So people would do medical trials, get some 

results, and then from the data somehow you need to make sense of them and make a decision. Is 

the new drug useful or is it not? How do we go systematically about the question of this type?  

A sexier, more recent topic, there's this famous Netflix competition where Netflix gives you a 

huge table of movies and people. And people have rated the movies, but not everyone has 

watched all of the movies in there. You have some of the ratings.  

For example, this person gave a 4 to that particular movie. So you get the table that's partially 

filled. And the Netflix asks you to make recommendations to people.  

So this means trying to guess. This person here, how much would they like this particular movie? 

And you can start thinking, well, maybe this person has given somewhat similar ratings with 

another person.  

And if that other person has also seen that movie, maybe the rating of that other person is 

relevant. But of course it's a lot more complicated than that. And this has been a serious 
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competition where people have been using every heavy, wet machinery that there is in statistics, 

trying to come up with good recommendation systems.  

Then the other people, of course, are trying to analyze financial data. Somebody gives you the 

sequence of the values, let's say of the SMP index. You look at something like this and you can 

ask questions. How do I model these data using any of the models that we have in our bag of 

tools? How can I make predictions about what's going to happen afterwards, and so on?  

On the engineering side, anywhere where you have noise inference comes in. Signal processing, 

in some sense, is just an inference problem. You observe signals that are noisy and you try to 

figure out exactly what's happening out there or what kind of signal has been sent.  

Maybe the beginning of the field could be traced a few hundred years ago where people would 

observe, make astronomical observations of the position of the planets in the sky. They would 

have some beliefs that perhaps the orbits of planets is an ellipse. Or if it's a comet, maybe it's a 

parabola, hyperbola, don't know what it is. But they would have a model of that.  

But, of course, astronomical measurements would not be perfectly exact. And they would try to 

find the curve that fits these data. How do you go about choosing this particular curve on the 

base of noisy data and try to do it in a somewhat principled way?  

OK, so questions of this type-- clearly the applications are all over the place. But how is this 

related conceptually with what we have been doing so far? What's the relation between the field 

of inference and the field of probability as we have been practicing until now?  

Well, mathematically speaking, what's going to happen in the next few lectures could be just 

exercises or homework problems in the class in based on what we have done so far. That means 

you're not going to get any new facts about probability theory. Everything we're going to do will 

be simple applications of things that you already do know.  

So in some sense, statistics and inference is just an applied exercise in probability. But actually, 

things are not that simple in the following sense. If you get a probability problem, there's a 

correct answer.  

There's a correct solution. And that correct solution is unique. There's no ambiguity.  

The theory of probability has clearly defined rules. These are the axioms. You're given some 

information about probability distributions.  

You're asked to calculate certain other things. There's no ambiguity. Answers are always unique.  

In statistical questions, it's no longer the case that the question has a unique answer. If I give you 

data and I ask you what's the best way of estimating the motion of that planet, reasonable people 

can come up with different methods. And reasonable people will try to argue that's my method 

has these desirable properties but somebody else may say, here's another method that has certain 

desirable properties. And it's not clear what the best method is.  
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So it's good to have some understanding of what the issues are and to know at least what is the 

general class of methods that one tries to consider, how does one go about such problems. So 

we're going to see lots and lots of different inference methods. We're not going to tell you that 

one is better than the other. But it's important to understand what are the concepts between those 

different methods.  

And finally, statistics can be misused really badly. That is, one can come up with methods that 

you think are sound, but in fact they're not quite that. I will bring some examples next time and 

talk a little more about this.  

So, they want to say, you have some data, you want to make some inference from them, what 

many people will do is to go to Wikipedia, find a statistical test that they think it applies to that 

situation, plug in numbers, and present results. Are the conclusions that they get really justified 

or are they misusing statistical methods?  

Well, too many people actually do misuse statistics and conclusions that people get are often 

false. So it's important to, besides just being able to copy statistical tests and use them, to 

understand what are the assumptions between the different methods and what kind of guarantees 

they have, if any. All right, so we'll try to do a quick tour through the field of inference in this 

lecture and the next few lectures that we have left this semester and try to highlight at the very 

high level the main concept skills, and techniques that come in. Let's start with some generalities 

and some general statements.  

One first statement is that statistics or inference problems come up in very different guises. And 

they may look as if they are of very different forms. Although, at some fundamental level, the 

basic issues turn out to be always pretty much the same.  

So let's look at this example. There's an unknown signal that's being sent. It's sent through some 

medium, and that medium just takes the signal and amplifies it by a certain number.  

So you can think of somebody shouting. There's the air out there. What you shouted will be 

attenuated through the air until it gets to a receiver. And that receiver then observes this, but 

together with some random noise.  

Here I meant S. S is the signal that's being sent. And what you observe is an X.  

You observe X, so what kind of inference problems could we have here? In some cases, you 

want to build a model of the physical phenomenon that you're dealing with. So for example, you 

don't know the attenuation of your signal and you try to find out what this number is based on the 

observations that you have.  

So the way this is done in engineering systems is that you design a certain signal, you know what 

it is, you shout a particular word, and then the receiver listens. And based on the intensity of the 

signal that they get, they try to make a guess about A. So you don't know A, but you know S. 

And by observing X, you get some information about what A is.  
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So in this case, you're trying to build a model of the medium through which your signal is 

propagating. So sometimes one would call problems of this kind, let's say, system identification. 

In a different version of an inference problem that comes with this picture, you've done your 

modeling.  

You know your A. You know the medium through which the signal is going, but it's a 

communication system. This person is trying to communicate something to that person. So you 

send the signal S, but that person receives a noisy version of S. So that person tries to reconstruct 

S based on X.  

So in both cases, we have a linear relation between X and the unknown quantity. In one version, 

A is the unknown and we know S. In the other version, A is known, and so we try to infer S.  

Mathematically, you can see that this is essentially the same kind of problem in both cases. 

Although, the kind of practical problem that you're trying to solve is a little different. So we will 

not be making any distinctions between problems of the model building type as opposed to 

models where you try to estimate some unknown signal and so on. Because conceptually, the 

tools that one uses for both types of problems are essentially the same.  

OK, next a very useful classification of inference problems-- the unknown quantity that you're 

trying to estimate could be either a discrete one that takes a small number of values. So this 

could be discrete problems, such as the airplane radar problem we encountered back a long time 

ago in this class. So there's two possibilities-- an airplane is out there or an airplane is not out 

there.  

And you're trying to make a decision between these two options. Or you can have other problems 

would you have, let's say, four possible options. You don't know which one is true, but you get 

data and you try to figure out which one is true.  

In problems of these kind, usually you want to make a decision based on your data. And you're 

interested in the probability of making a correct decision. You would like that probability to be 

as high as possible.  

Estimation problems are a little different. Here you have some continuous quantity that's not 

known. And you try to make a good guess of that quantity. And you would like your guess to be 

as close as possible to the true quantity.  

So the polling problem was of this type. There was an unknown fraction f of the population that 

had some property. And you try to estimate f as accurately as you can.  

So the distinction here is that usually here the unknown quantity takes on discrete set of values. 

Here the unknown quantity takes a continuous set of values. Here we're interested in the 

probability of error.  
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Here we're interested in the size of the error. Broadly speaking, most inference problems fall 

either in this category or in that category. Although, if you want to complicate life, you can also 

think or construct problems where both of these aspects are simultaneously present.  

OK, finally since we're in classification mode, there is a very big, important dichotomy into how 

one goes about inference problems. And here there's two fundamentally different philosophical 

points of view, which is how do we model the quantity that is unknown?  

In one approach, you say there's a certain quantity that has a definite value. It just happens that 

they don't know it. But it's a number. There's nothing random about it. So think of trying to 

estimate some physical quantity.  

You're making measurements, you try to estimate the mass of an electron, which is a sort of 

universal physical constant. There's nothing random about it. It's a fixed number. You get data, 

because you have some measuring apparatus.  

And that measuring apparatus, depending on what that results that you get are affected by the 

true mass of the electron, but there's also some noise. You take the data out of your measuring 

apparatus and you try to come up with some estimate of that quantity theta. So this is definitely a 

legitimate picture, but the important thing in this picture is that this theta is written as lowercase. 

And that's to make the point that it's a real number, not a random variable.  

There's a different philosophical approach which says, well, anything that I don't know I should 

model it as a random variable. Yes, I know. The mass of the electron is not really random. It's a 

constant.  

But I don't know what it is. I have some vague sense, perhaps, what it is perhaps because of the 

experiments that some other people carried out. So perhaps I have a prior distribution on the 

possible values of Theta.  

And that prior distribution doesn't mean that the nature is random, but it's more of a subjective 

description of my subjective beliefs of where do I think this constant number happens to be. So 

even though it's not truly random, I model my initial beliefs before the experiment starts. In 

terms of a prior distribution, I view it as a random variable. Then I observe another related 

random variable through some measuring apparatus. And then I use this again to create an 

estimate.  

So these two pictures philosophically are very different from each other. Here we treat the 

unknown quantities as unknown numbers. Here we treat them as random variables.  

When we treat them as a random variables, then we know pretty much already what we should 

be doing. We should just use the Bayes rule. Based on X, find the conditional distribution of 

Theta. And that's what we will be doing mostly over this lecture and the next lecture.  

Now in both cases, what you end up getting at the end is an estimate. But actually, that estimate 

is what kind of object is it? It's a random variable in both cases. Why?  
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Even in this case where theta was a constant, my data are random. I do my data processing. So I 

calculate a function of the data, the data are random variables.  

So out here we output something which is a function of a random variable. So this quantity here 

will be also random. It's affected by the noise and the experiment that I have been doing.  

That's why these estimators will be denoted by uppercase Thetas. And we will be using hats. Hat, 

usually in estimation, means an estimate of something.  

All right, so this is the big picture. We're going to start with the Bayesian version. And then the 

last few lectures we're going to talk about the non-Bayesian version or the classical one.  

By the way, I should say that statisticians have been debating fiercely for 100 years whether the 

right way to approach statistics is to go the classical way or the Bayesian way. And there have 

been tides going back and forth between the two sides. These days, Bayesian methods tend to 

become a little more popular for various reasons. We're going to come back to this later.  

All right, so in Bayesian estimation, what we got in our hands is Bayes rule. And if you have 

Bayes rule, there's not a lot that's left to do. We have different forms of the Bayes rule, 

depending on whether we're dealing with discrete data, And discrete quantities to estimate, or 

continuous data, and so on.  

In the hypothesis testing problem, the unknown quantity Theta is discrete. So in both cases here, 

we have a P of Theta. We obtain data, the X's. And on the basis of the X that we observe, we can 

calculate the posterior distribution of Theta, given the data.  

So to use Bayesian inference, what do we start with? We start with some priors. These are our 

initial beliefs about what Theta that might be. That's before we do the experiment.  

We have a model of the experimental aparatus. And the model of the experimental apparatus 

tells us if this Theta is true, I'm going to see X's of that kind. If that other Theta is true, I'm going 

to see X's that they are somewhere else. That models my apparatus.  

And based on that knowledge, once I observe I have these two functions in my hands, we have 

already seen that if you know those two functions, you can also calculate the denominator here. 

So all of these functions are available, so you can compute, you can find a formula for this 

function as well. And as soon as you observe the data, that X's, you plug in here the numerical 

value of those X's. And you get a function of Theta. And this is the posterior distribution of 

Theta, given the data that you have seen.  

So you've already done a fair number of exercises of these kind. So we not say more about this. 

And there's a similar formula as you know for the case where we have continuous data. If the X's 

are continuous random variable, then the formula is the same, except that X's are described by 

densities instead of being described by a probability mass functions.  
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OK, now if Theta is continuous, then we're dealing with estimation problems. But the story is 

once more the same. You're going to use the Bayes rule to come up with the posterior density of 

Theta, given the data that you have observed.  

Now just for the sake of the example, let's come back to this picture here. Suppose that 

something is flying in the air, and maybe this is just an object in the air close to the Earth. So 

because of gravity, the trajectory that it's going to follow it's going to be a parabola.  

So this is the general equation of a parabola. Zt is the position of my objects at time t. But I don't 

know exactly which parabola it is. So the parameters of the parabola are unknown quantities.  

What I can do is to go and measure the position of my objects at different times. But 

unfortunately, my measurements are noisy. What I want to do is to model the motion of my 

object. So I guess in the picture, the axis would be t going this way and Z going this way.  

And on the basis of the data that they get, these are my X's. I want to figure out the Thetas. That 

is, I want to figure out the exact equation of this parabola.  

Now if somebody gives you probability distributions for Theta, these would be your priors. So 

this is given. We need the conditional distribution of the X's given the Thetas.  

Well, we have the conditional distribution of Z, given the Thetas from this equation. And then by 

playing with this equation, you can also find how is X distributed if Theta takes a particular 

value.  

So you do have all of the densities that you might need. And you can apply the Bayes rule. And 

at the end, your end result would be a formula for the distribution of Theta, given to the X that 

you have observed-- except for one sort of computation, or to make things more interesting.  

Instead of these X's and Theta's being single random variables that we have here, typically those 

X's and Theta's will be multi-dimensional random variables or will correspond to multiple ones. 

So this little Theta here actually stands for a triplet of Theta0, Theta1, and Theta2. And that X 

here stands here for the entire sequence of X's that we have observed.  

So in reality, the object that you're going to get at to the end after inference is done is a function 

that you plug in the values of the data and you get the function of the Theta's that tells you the 

relative likelihoods of different Theta triplets.  

So what I'm saying is that this is no harder than the problems that you have dealt with so far, 

except perhaps for the complication that's usually in interesting inference problems. Your Theta's 

and X's are often the vectors of random variables instead of individual random variables.  

Now if you are to do estimation in a case where you have discrete data, again the situation is no 

different. We still have a Bayes rule of the same kind, except that densities gets replaced by 

PMF's. If X is discrete, you put a P here instead of putting an f.  
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So an example of an estimation problem with discrete data is similar to the polling problem. You 

have a coin. It has an unknown parameter Theta. This is the probability of obtaining heads. You 

flip the coin many times. What can you tell me about the true value of Theta?  

A classical statistician, at this point, would say, OK, I'm going to use an estimator, the most 

reasonable one, which is this. How many heads did they obtain in n trials? Divide by the total 

number of trials. This is my estimate of the bias of my coin.  

And then the classical statistician would continue from here and try to prove some properties and 

argue that this estimate is a good one. For example, we have the weak law of large numbers that 

tells us that this particular estimate converges in probability to the true parameter. This is a kind 

of guarantee that's useful to have. And the classical statistician would pretty much close the 

subject in this way.  

What would the Bayesian person do differently? The Bayesian person would start by assuming a 

prior distribution of Theta. Instead of treating Theta as an unknown constant, they would say that 

Theta would speak randomly or pretend that it would speak randomly and assume a distribution 

on Theta.  

So for example, if you don't know they need anything more, you might assume that any value for 

the bias of the coin is as likely as any other value of the bias of the coin. And this way so the 

probability distribution that's uniform. Or if you have a little more faith in the manufacturing 

processes that's created that coin, you might choose your prior to be a distribution that's centered 

around 1/2 and sits fairly narrowly centered around 1/2.  

That would be a prior distribution in which you say, well, I believe that the manufacturer tried to 

make my coin to be fair. But they often makes some mistakes, so it's going to be, I believe, it's 

approximately 1/2 but not quite. So depending on your beliefs, you would choose an appropriate 

prior for the distribution of Theta. And then you would use the Bayes rule to find the 

probabilities of different values of Theta, based on the data that you have observed.  

So no matter which version of the Bayes rule that you use, the end product of the Bayes rule is 

going to be either a plot of this kind or a plot of that kind. So what am I plotting here? This axis 

is the Theta axis. These are the possible values of the unknown quantity that we're trying to 

estimate.  

In the continuous case, theta is a continuous random variable. I obtain my data. And I plot for the 

posterior probability distribution after observing my data. And I'm plotting here the probability 

density for Theta. So this is a plot of that density.  

In the discrete case, theta can take finitely many values or a discrete set of values. And for each 

one of those values, I'm telling you how likely is that the value to be the correct one, given the 

data that I have observed. And in general, what you would go back to your boss and report after 

you've done all your inference work would be either a plot of this kinds or of that kind.  
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So you go to your boss who asks you, what is the value of Theta? And you say, well, I only have 

limited data. That I don't know what it is. It could be this, with so much probability. There's 

probability.  

OK, let's throw in some numbers here. There's probability 0.3 that Theta is this value. There's 

probability 0.2 that Theta is this value, 0.1 that it's this one, 0.1 that it's this one, 0.2 that it's that 

one, and so on.  

OK, now bosses often want simple answers. They say, OK, you're talking too much. What do 

you think Theta is? And now you're forced to make a decision. If that was the situation and you 

have to make a decision, how would you make it? Well, I'm going to make a decision that's most 

likely to be correct. If I make this decision, what's going to happen?  

Theta is this value with probability 0.2, which means there's probably 0.8 that they make an error 

if I make that guess. If I make that decision, this decision has probably 0.3 of being the correct 

one. So I have probably of error 0.7.  

So if you want to just maximize the probability of giving the correct decision, or if you want to 

minimize the probability of making an incorrect decision, what you're going to choose to report 

is that value of Theta for which the probability is highest. So in this case, I would choose to 

report this particular value, the most likely value of Theta, given what I have observed. And that 

value is called them maximum a posteriori probability estimate. It's going to be this one in our 

case.  

So picking the point in the posterior PMF that has the highest probability. That's the reasonable 

thing to do. This is the optimal thing to do if you want to minimize the probability of an incorrect 

inference. And that's what people do usually if they need to report a single answer, if they need 

to report a single decision.  

How about in the estimation context? If that's what you know about Theta, Theta could be 

around here, but there's also some sharp probability that it is around here. What's the single 

answer that you would give to your boss?  

One option is to use the same philosophy and say, OK, I'm going to find the Theta at which this 

posterior density is highest. So I would pick this point here and report this particular Theta. So 

this would be my Theta, again, Theta MAP, the Theta that has the highest a posteriori 

probability, just because it corresponds to the peak of the density.  

But in this context, the maximum a posteriori probability theta was the one that was most likely 

to be true. In the continuous case, you cannot really say that this is the most likely value of 

Theta. In a continuous setting, any value of Theta has zero probability, so when we talk about 

densities. So it's not the most likely. It's the one for which the density, so the probabilities of that 

neighborhoods, are highest. So the rationale for picking this particular estimate in the continuous 

case is much less compelling than the rationale that we had in here.  
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So in this case, reasonable people might choose different quantities to report. And the very 

popular one would be to report instead the conditional expectation. So I don't know quite what 

Theta is.  

Given the data that I have, Theta has this distribution. Let me just report the average over that 

distribution. Let me report to the center of gravity of this figure.  

And in this figure, the center of gravity would probably be somewhere around here. And that 

would be a different estimate that you might choose to report. So center of gravity is something 

around here. And this is a conditional expectation of Theta, given the data that you have.  

So these are two, in some sense, fairly reasonable ways of choosing what to report to your boss. 

Some people might choose to report this. Some people might choose to report that. And a priori, 

if there's no compelling reason why one would be preferable than other one, unless you set some 

rules for the game and you describe a little more precisely what your objectives are.  

But no matter which one you report, a single answer, a point estimate, doesn't really tell you the 

whole story. There's a lot more information conveyed by this posterior distribution plot than any 

single number that you might report. So in general, you may wish to convince your boss that's it's 

worth their time to look at the entire plot, because that plot sort of covers all the possibilities. It 

tells your boss most likely we're in that range, but there's also a distinct change that our Theta 

happens to lie in that range.  

All right, now let us try to perhaps differentiate between these two and see under what 

circumstances this one might be the better estimate to perform. Better with respect to what? We 

need some rules. So we're going to throw in some rules.  

As a warm up, we're going to deal with the problem of making an estimation if you had no 

information at all, except for a prior distribution. So this is a warm up for what's coming next, 

which would be estimation that takes into account some information.  

So we have a Theta. And because of your subjective beliefs or models by others, you believe that 

Theta is uniformly distributed between, let's say, 4 and 10. You want to come up with a point 

estimate.  

Let's try to look for an estimate. Call it c, in this case. I want to pick a number with which to 

estimate the value of Theta. I will be interested in the size of the error that I make. And I really 

dislike large errors, so I'm going to focus on the square of the error that they make.  

So I pick c. Theta that has a random value that I don't know. But whatever it is, once it becomes 

known, it results into a squared error between what it is and what I guessed that it was. And I'm 

interested in making a small air on the average, where the average is taken with respect to all the 

possible and unknown values of Theta.  

So the problem, this is a least squares formulation of the problem, where we try to minimize the 

least squares errors. How do you find the optimal c? Well, we take that expression and expand it. 
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And it is, using linearity of expectations-- square minus 2c expected Theta plus c squared-- that's 

the quantity that we want to minimize, with respect to c.  

To do the minimization, take the derivative with respect to c and set it to 0. So that 

differentiation gives us from here minus 2 expected value of Theta plus 2c is equal to 0. And the 

answer that you get by solving this equation is that c is the expected value of Theta.  

So when you do this optimization, you find that the optimal estimate, the things you should be 

reporting, is the expected value of Theta. So in this particular example, you would choose your 

estimate c to be just the middle of these values, which would be 7.  

OK, and in case your boss asks you, how good is your estimate? How big is your error going to 

be? What you could report is the average size of the estimation error that you are making. We 

picked our estimates to be the expected value of Theta. So for this particular way that I'm 

choosing to do my estimation, this is the mean squared error that I get. And this is a familiar 

quantity. It's just the variance of the distribution.  

So the expectation is that best way to estimate a quantity, if you're interested in the mean squared 

error. And the resulting mean squared error is the variance itself. How will this story change if 

we now have data as well? Now having data means that we can compute posterior distributions 

or conditional distributions. So we get transported into a new universe where instead the working 

with the original distribution of Theta, the prior distribution, now we work with the condition of 

distribution of Theta, given the data that we have observed.  

Now remember our old slogan that conditional models and conditional probabilities are no 

different than ordinary probabilities, except that we live now in a new universe where the new 

information has been taken into account. So if you use that philosophy and you're asked to 

minimize the squared error but now that you live in a new universe where X has been fixed to 

something, what would the optimal solution be? It would again be the expectation of theta, but 

which expectation? It's the expectation which applies in the new conditional universe in which 

we live right now.  

So because of what we did before, by the same calculation, we would find that the optimal 

estimates is the expected value of X of Theta, but the optimal estimate that takes into account the 

information that we have. So the conclusion, once you get your data, if you want to minimize the 

mean squared error, you should just report the conditional estimation of this unknown quantity 

based on the data that you have.  

So the picture here is that Theta is unknown. You have your apparatus that creates 

measurements. So this creates an X. You take an X, and here you have a box that does 

calculations. It does calculations and it spits out the conditional expectation of Theta, given the 

particular data that you have observed.  

And what we have done in this class so far is, to some extent, developing the computational tools 

and skills to do with this particular calculation-- how to calculate the posterior density for Theta 

and how to calculate expectations, conditional expectations. So in principle, we know how to do 
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this. In principle, we can program a computer to take the data and to spit out condition 

expectations.  

Somebody who doesn't think like us might instead design a calculating machine that does 

something differently and produces some other estimate. So we went through this argument and 

we decided to program our computer to calculate conditional expectations. Somebody else came 

up with some other crazy idea for how to estimate the random variable. They came up with some 

function g and the programmed it, and they designed a machine that estimates Theta's by 

outputting a certain g of X.  

That could be an alternative estimator. Which one is better? Well, we convinced ourselves that 

this is the optimal one in a universe where we have fixed the particular value of the data. So what 

we have proved so far is a relation of this kind. In this conditional universe, the mean squared 

error that I get-- I'm the one who's using this estimator-- is less than or equal than the mean 

squared error that this person will get, the person who uses that estimator.  

For any particular value of the data, I'm going to do better than the other person. Now the data 

themselves are random. If I average over all possible values of the data, I should still be better 

off. If I'm better off for any possible value X, then I should be better off on the average over all 

possible values of X.  

So let us average both sides of this quantity with respect to the probability distribution of X. If 

you want to do it formally, you can write this inequality between numbers as an inequality 

between random variables. And it tells that no matter what that random variable turns out to be, 

this quantity is better than that quantity. Take expectations of both sides, and you get this 

inequality between expectations overall.  

And this last inequality tells me that the person who's using this estimator who produces 

estimates according to this machine will have a mean squared estimation error that's less than or 

equal to the estimation error that's produced by the other person. In a few words, the conditional 

expectation estimator is the optimal estimator. It's the ultimate estimating machine. That's how 

you should solve estimation problems and report a single value. If you're forced to report a single 

value and if you're interested in estimation errors.  

OK, while we could have told you that story, of course, a month or two ago, this is really about 

interpretation -- about realizing that conditional expectations have a very nice property. But other 

than that, any probabilistic skills that come into this business are just the probabilistic skills of 

being able to calculate conditional expectations, which you already know how to do.  

So conclusion, all of optimal Bayesian estimation just means calculating and reporting 

conditional expectations. Well, if the world were that simple, then statisticians wouldn't be able 

to find jobs if life is that simple. So real life is not that simple. There are complications. And that 

perhaps makes their life a little more interesting.  

OK, one complication is that we would deal with the vectors instead of just single random 

variables. I use the notation here as if X was a single random variable. In real life, you get 
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several data. Does our story change? Not really, same argument-- given all the data that you have 

observed, you should still report the conditional expectation of Theta.  

But what kind of work does it take in order to report this conditional expectation? One issue is 

that you need to cook up a plausible prior distribution for Theta. How do you do that? In a given 

application , this is a bit of a judgment call, what prior would you be working with. And there's a 

certain skill there of not making silly choices.  

A more pragmatic, practical issue is that this is a formula that's extremely nice and compact and 

simple that you can write with minimal ink. But the behind it there could be hidden a huge 

amount of calculation. So doing any sort of calculations that involve multiple random variables 

really involves calculating multi-dimensional integrals.  

And the multi-dimensional integrals are hard to compute. So implementing actually this 

calculating machine here may not be easy, might be complicated computationally. It's also 

complicated in terms of not being able to derive intuition about it. So perhaps you might want to 

have a simpler version, a simpler alternative to this formula that's easier to work with and easier 

to calculate.  

We will be talking about one such simpler alternative next time. So again, to conclude, at the 

high level, Bayesian estimation is very, very simple, given that you have mastered everything 

that has happened in this course so far. There are certain practical issues and it's also good to be 

familiar with the concepts and the issues that in general, you would prefer to report that complete 

posterior distribution. But if you're forced to report a point estimate, then there's a number of 

reasonable ways to do it. And perhaps the most reasonable one is to just the report the 

conditional expectation itself.  

13



MIT OpenCourseWare
http://ocw.mit.edu

6.041SC Probabilistic Systems Analysis and Applied Probability
Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu



