LECTURE 24

- Reference: Section 9.3

Outline

- Review
- Maximum likelihood estimation
- Confidence intervals
- Linear regression
- Binary hypothesis testing
- Types of error
- Likelihood ratio test (LRT)

Regression

- Data: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$
- Model: $y \approx \theta_{0}+\theta_{1} x$

$$
\begin{equation*}
\min _{\theta_{0}, \theta_{1}} \sum_{i=1}^{n}\left(y_{i}-\theta_{0}-\theta_{1} x_{i}\right)^{2} \tag{*}
\end{equation*}
$$

- One interpretation: $Y_{i}=\theta_{0}+\theta_{1} x_{i}+W_{i}, \quad W_{i} \sim N\left(0, \sigma^{2}\right)$, i.i.d.
- Likelihood function $f_{X, Y \mid \theta}(x, y ; \theta)$ is:

$$
c \cdot \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\theta_{0}-\theta_{1} x_{i}\right)^{2}\right\}
$$

- Take logs, same as (*)
- Least sq. \leftrightarrow pretend W_{i} i.i.d. normal

Review

- Maximum likelihood estimation
- Have model with unknown parameters: $X \sim p_{X}(x ; \theta)$
- Pick θ that "makes data most likely"

$$
\max _{\theta} p_{X}(x ; \theta)
$$

- Compare to Bayesian MAP estimation:

$$
\max _{\theta} p_{\Theta \mid X}(\theta \mid x) \text { or } \max _{\theta} \frac{p_{X \mid \Theta}(x \mid \theta) p_{\Theta}(\theta)}{p_{Y}(y)}
$$

- Sample mean estimate of $\theta=\mathrm{E}[X]$

$$
\hat{\Theta}_{n}=\left(X_{1}+\cdots+X_{n}\right) / n
$$

- $1-\alpha$ confidence interval

$$
\mathbf{P}\left(\hat{\Theta}_{n}^{-} \leq \theta \leq \hat{\Theta}_{n}^{+}\right) \geq 1-\alpha, \quad \forall \theta
$$

- confidence interval for sample mean
- let z be s.t. $\Phi(z)=1-\alpha / 2$

$$
\mathbf{P}\left(\hat{\Theta}_{n}-\frac{z \sigma}{\sqrt{n}} \leq \theta \leq \hat{\Theta}_{n}+\frac{z \sigma}{\sqrt{n}}\right) \approx 1-\alpha
$$

Linear regression

- Model $y \approx \theta_{0}+\theta_{1} x$

$$
\min _{\theta_{0}, \theta_{1}} \sum_{i=1}^{n}\left(y_{i}-\theta_{0}-\theta_{1} x_{i}\right)^{2}
$$

- Solution (set derivatives to zero):

$$
\begin{gathered}
\bar{x}=\frac{x_{1}+\cdots+x_{n}}{n}, \quad \bar{y}=\frac{y_{1}+\cdots+y_{n}}{n} \\
\hat{\theta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \\
\hat{\theta}_{0}=\bar{y}-\hat{\theta}_{1} \bar{x}
\end{gathered}
$$

- Interpretation of the form of the solution
- Assume a model $Y=\theta_{0}+\theta_{1} X+W$ W independent of X, with zero mean
- Check that
$\theta_{1}=\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}=\frac{\mathbf{E}[(X-\mathbf{E}[X])(Y-\mathbf{E}[Y])]}{\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right]}$
- Solution formula for $\hat{\theta}_{1}$ uses natural estimates of the variance and covariance

The world of linear regression

- Multiple linear regression:
- data: $\left(x_{i}, x_{i}^{\prime}, x_{i}^{\prime \prime}, y_{i}\right), i=1, \ldots, n$
- model: $y \approx \theta_{0}+\theta x+\theta^{\prime} x^{\prime}+\theta^{\prime \prime} x^{\prime \prime}$
- formulation:

$$
\min _{\theta, \theta^{\prime}, \theta^{\prime \prime}} \sum_{i=1}^{n}\left(y_{i}-\theta_{0}-\theta x_{i}-\theta^{\prime} x_{i}^{\prime}-\theta^{\prime \prime} x_{i}^{\prime \prime}\right)^{2}
$$

- Choosing the right variables

- model $y \approx \theta_{0}+\theta_{1} h(x)$
e.g., $y \approx \theta_{0}+\theta_{1} x^{2}$
- work with data points $\left(y_{i}, h(x)\right)$
- formulation:

$$
\min _{\theta} \sum_{i=1}^{n}\left(y_{i}-\theta_{0}-\theta_{1} h_{1}\left(x_{i}\right)\right)^{2}
$$

The world of regression (ctd.)

- In practice, one also reports
- Confidence intervals for the θ_{i}
- "Standard error" (estimate of σ)
- R^{2}, a measure of "explanatory power"
- Some common concerns
- Heteroskedasticity
- Multicollinearity
- Sometimes misused to conclude causal relations
- etc.

Binary hypothesis testing

- Binary θ; new terminology:
- null hypothesis H_{0} :

$$
X \sim p_{X}\left(x ; H_{0}\right) \quad\left[\operatorname{or} f_{X}\left(x ; H_{0}\right)\right]
$$

- alternative hypothesis H_{1} :

$$
X \sim p_{X}\left(x ; H_{1}\right) \quad\left[\operatorname{or} f_{X}\left(x ; H_{1}\right)\right]
$$

- Partition the space of possible data vectors Rejection region R :
reject H_{0} iff data $\in R$
- Types of errors:
- Type I (false rejection, false alarm): H_{0} true, but rejected

$$
\alpha(R)=\mathbf{P}\left(X \in R ; H_{0}\right)
$$

- Type II (false acceptance, missed detection) H_{0} false, but accepted

$$
\beta(R)=\mathbf{P}\left(X \notin R ; H_{1}\right)
$$

Likelihood ratio test (LRT)

- Bayesian case (MAP rule): choose H_{1} if: $\mathbf{P}\left(H_{1} \mid X=x\right)>\mathbf{P}\left(H_{0} \mid X=x\right)$ or
$\frac{\mathbf{P}\left(X=x \mid H_{1}\right) \mathbf{P}\left(H_{1}\right)}{\mathbf{P}(X=x)}>\frac{\mathbf{P}\left(X=x \mid H_{0}\right) \mathbf{P}\left(H_{0}\right)}{\mathbf{P}(X=x)}$ or

$$
\frac{\mathbf{P}\left(X=x \mid H_{1}\right)}{\mathbf{P}\left(X=x \mid H_{0}\right)}>\frac{\mathbf{P}\left(H_{0}\right)}{\mathbf{P}\left(H_{1}\right)}
$$

(likelihood ratio test)

- Nonbayesian version: choose H_{1} if

$$
\frac{\mathbf{P}\left(X=x ; H_{1}\right)}{\mathbf{P}\left(X=x ; H_{0}\right)}>\xi \quad \text { (discrete case) }
$$

$$
\frac{f_{X}\left(x ; H_{1}\right)}{f_{X}\left(x ; H_{0}\right)}>\xi \quad \text { (continuous case) }
$$

- threshold ξ trades off the two types of error
- choose ξ so that $\mathbf{P}\left(\right.$ reject $\left.H_{0} ; H_{0}\right)=\alpha$ (e.g., $\alpha=0.05$)

MIT OpenCourseWare
http://ocw.mit.edu

6.041SC Probabilistic Systems Analysis and Applied Probability

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

