
“mcs” — 2015/5/18 — 1:43 — page 243 — #251

8 Number Theory
Number theory is the study of the integers. Why anyone would want to study the
integers may not be obvious. First of all, what’s to know? There’s 0, there’s 1, 2,
3, and so on, and, oh yeah, -1, -2, Which one don’t you understand? What
practical value is there in it?

The mathematician G. H. Hardy delighted at its impracticality. He wrote:

[Number theorists] may be justified in rejoicing that there is one sci-
ence, at any rate, and that their own, whose very remoteness from or-
dinary human activities should keep it gentle and clean.

Hardy was especially concerned that number theory not be used in warfare; he
was a pacifist. You may applaud his sentiments, but he got it wrong: number theory
underlies modern cryptography, which is what makes secure online communication
possible. Secure communication is of course crucial in war—leaving poor Hardy
spinning in his grave. It’s also central to online commerce. Every time you buy a
book from Amazon, use a certificate to access a web page, or use a PayPal account,
you are relying on number theoretic algorithms.

Number theory also provides an excellent environment for us to practice and
apply the proof techniques that we developed in previous chapters. We’ll work out
properties of greatest common divisors (gcd’s) and use them to prove that integers
factor uniquely into primes. Then we’ll introduce modular arithmetic and work out
enough of its properties to explain the RSA public key crypto-system.

Since we’ll be focusing on properties of the integers, we’ll adopt the default
convention in this chapter that variables range over the set, Z, of integers.

8.1 Divisibility

The nature of number theory emerges as soon as we consider the divides relation.

Definition 8.1.1. a divides b (notation a j b) iff there is an integer k such that

ak D b:

The divides relation comes up so frequently that multiple synonyms for it are
used all the time. The following phrases all say the same thing:

“mcs” — 2015/5/18 — 1:43 — page 244 — #252

244 Chapter 8 Number Theory

✏ a j b,

✏ a divides b,

✏ a is a divisor of b,

✏ a is a factor of b,

✏ b is divisible by a,

✏ b is a multiple of a.

Some immediate consequences of Definition 8.1.1 are that for all n

n j 0; n j n; and ˙ 1 j n:

Also,
0 j n IMPLIES n D 0:

Dividing seems simple enough, but let’s play with this definition. The Pythagore-
ans, an ancient sect of mathematical mystics, said that a number is perfect if it
equals the sum of its positive integral divisors, excluding itself. For example,
6 D 1 C 2 C 3 and 28 D 1 C 2 C 4 C 7 C 14 are perfect numbers. On the
other hand, 10 is not perfect because 1C 2C 5 D 8, and 12 is not perfect because
1C 2C 3C 4C 6 D 16. Euclid characterized all the even perfect numbers around
300 BC (Problem 8.2). But is there an odd perfect number? More than two thou-
sand years later, we still don’t know! All numbers up to about 10300 have been
ruled out, but no one has proved that there isn’t an odd perfect number waiting just
over the horizon.

So a half-page into number theory, we’ve strayed past the outer limits of human
knowledge. This is pretty typical; number theory is full of questions that are easy to
pose, but incredibly difficult to answer. We’ll mention a few more such questions
in later sections.1

8.1.1 Facts about Divisibility
The following lemma collects some basic facts about divisibility.

Lemma 8.1.2.

1. If a j b and b j c, then a j c.
1Don’t Panic—we’re going to stick to some relatively benign parts of number theory. These

super-hard unsolved problems rarely get put on problem sets.

“mcs” — 2015/5/18 — 1:43 — page 245 — #253

8.1. Divisibility 245

2. If a j b and a j c, then a j sb C tc for all s and t .

3. For all c ¤ 0, a j b if and only if ca j cb.

Proof. These facts all follow directly from Definition 8.1.1. To illustrate this, we’ll
prove just part 2:

Given that a j b, there is some k1 2 Z such that ak1 D b. Likewise, ak2 D c,
so

sb C tc D s.k1a/C t .k2a/ D .sk1 C tk2/a:

Therefore sb C tc D k3a where k3 WWD .sk1 C tk2/, which means that

a j sb C tc:

⌅

A number of the form sbC tc is called an integer linear combination of b and c,
or, since in this chapter we’re only talking about integers, just a linear combination.
So Lemma 8.1.2.2 can be rephrased as

If a divides b and c, then a divides every linear combination of b and c.

We’ll be making good use of linear combinations, so let’s get the general definition
on record:

Definition 8.1.3. An integer n is a linear combination of numbers b0; : : : ; bk iff

n D s0b0 C s1b1 C � � �C skbk

for some integers s0; : : : ; sk .

8.1.2 When Divisibility Goes Bad
As you learned in elementary school, if one number does not evenly divide another,
you get a “quotient” and a “remainder” left over. More precisely:

Theorem 8.1.4. [Division Theorem]2 Let n and d be integers such that d > 0.
Then there exists a unique pair of integers q and r , such that

n D q � d C r AND 0 r < d: (8.1)
2This theorem is often called the “Division Algorithm,” but we prefer to call it a theorem since it

does not actually describe a division procedure for computing the quotient and remainder.

“mcs” — 2015/5/18 — 1:43 — page 246 — #254

246 Chapter 8 Number Theory

The number q is called the quotient and the number r is called the remainder of
n divided by d . We use the notation qcnt.n; d/ for the quotient and rem.n; d/ for
the remainder. For example, qcnt.2716; 10/ D 271 and rem.2716; 10/ D 6, since
2716 D 271 � 10C 6. Similarly, rem.�11; 7/ D 3, since �11 D .�2/ � 7C 3.

There is a remainder operator built into many programming languages. For ex-
ample, “32 % 5” will be familiar as remainder notation to programmers in Java,
C, and C++; it evaluates to rem.32; 5/ D 2 in all three languages. On the other
hand, these and other languages treat remainders involving negative numbers in-
consistently, so don’t be distracted by your programming language’s behavior, and
remember to stick to the definition according to the Division Theorem 8.1.4.

The remainder on division by n is a number in the (integer) interval from 0 to
n� 1. Such intervals come up so often that it is useful to have a simple notation for
them.

.k::n/ WWD fi j k < i < ng;

.k::nç WWD .k; n/ [fng;
Œk::n/ WWD fkg [.k; n/;

Œk::nç WWD fkg [.k; n/ [fng D fi j k i ng:

8.1.3 Die Hard
Die Hard 3 is just a B-grade action movie, but we think it has an inner message:
everyone should learn at least a little number theory. In Section 5.4.4, we formal-
ized a state machine for the Die Hard jug-filling problem using 3 and 5 gallon jugs,
and also with 3 and 9 gallon jugs, and came to different conclusions about bomb
explosions. What’s going on in general? For example, how about getting 4 gallons
from 12- and 18-gallon jugs, getting 32 gallons with 899- and 1147-gallon jugs, or
getting 3 gallons into a jug using just 21- and 26-gallon jugs?

It would be nice if we could solve all these silly water jug questions at once. This
is where number theory comes in handy.

A Water Jug Invariant

Suppose that we have water jugs with capacities a and b with b � a. Let’s carry
out some sample operations of the state machine and see what happens, assuming

“mcs” — 2015/5/18 — 1:43 — page 247 — #255

8.1. Divisibility 247

the b-jug is big enough:

.0; 0/! .a; 0/ fill first jug
! .0; a/ pour first into second
! .a; a/ fill first jug
! .2a � b; b/ pour first into second (assuming 2a � b)
! .2a � b; 0/ empty second jug
! .0; 2a � b/ pour first into second
! .a; 2a � b/ fill first
! .3a � 2b; b/ pour first into second (assuming 3a � 2b)

What leaps out is that at every step, the amount of water in each jug is a linear
combination of a and b. This is easy to prove by induction on the number of
transitions:

Lemma 8.1.5 (Water Jugs). In the Die Hard state machine of Section 5.4.4 with
jugs of sizes a and b, the amount of water in each jug is always a linear combination
of a and b.

Proof. The induction hypothesis, P.n/, is the proposition that after n transitions,
the amount of water in each jug is a linear combination of a and b.

Base case (n D 0): P.0/ is true, because both jugs are initially empty, and 0 � aC
0 � b D 0.

Inductive step: Suppose the machine is in state .x; y/ after n steps, that is, the little
jug contains x gallons and the big one contains y gallons. There are two cases:

✏ If we fill a jug from the fountain or empty a jug into the fountain, then that jug
is empty or full. The amount in the other jug remains a linear combination
of a and b. So P.nC 1/ holds.

✏ Otherwise, we pour water from one jug to another until one is empty or the
other is full. By our assumption, the amount x and y in each jug is a linear
combination of a and b before we begin pouring. After pouring, one jug is
either empty (contains 0 gallons) or full (contains a or b gallons). Thus, the
other jug contains either x C y gallons, x C y � a, or x C y � b gallons, all
of which are linear combinations of a and b since x and y are. So P.nC 1/

holds in this case as well.

Since P.n C 1/ holds in any case, this proves the inductive step, completing the
proof by induction. ⌅

“mcs” — 2015/5/18 — 1:43 — page 248 — #256

248 Chapter 8 Number Theory

So we have established that the jug problem has a preserved invariant, namely,
the amount of water in every jug is a linear combination of the capacities of the
jugs. Lemma 8.1.5 has an important corollary:

Corollary. In trying to get 4 gallons from 12- and 18-gallon jugs, and likewise to
get 32 gallons from 899- and 1147-gallon jugs,

Bruce will die!

Proof. By the Water Jugs Lemma 8.1.5, with 12- and 18-gallon jugs, the amount
in any jug is a linear combination of 12 and 18. This is always a multiple of 6 by
Lemma 8.1.2.2, so Bruce can’t get 4 gallons. Likewise, the amount in any jug using
899- and 1147-gallon jugs is a multiple of 31, so he can’t get 32 either. ⌅

But the Water Jugs Lemma doesn’t tell the complete story. For example, it leaves
open the question of getting 3 gallons into a jug using just 21- and 26-gallon jugs:
the only positive factor of both 21 and 26 is 1, and of course 1 divides 3, so the
Lemma neither rules out nor confirms the possibility of getting 3 gallons.

A bigger issue is that we’ve just managed to recast a pretty understandable ques-
tion about water jugs into a technical question about linear combinations. This
might not seem like a lot of progress. Fortunately, linear combinations are closely
related to something more familiar, greatest common divisors, and will help us
solve the general water jug problem.

8.2 The Greatest Common Divisor

A common divisor of a and b is a number that divides them both. The greatest
common divisor of a and b is written gcd.a; b/. For example, gcd.18; 24/ D 6.

As long as a and b are not both 0, they will have a gcd. The gcd turns out
to be very valuable for reasoning about the relationship between a and b and for
reasoning about integers in general. We’ll be making lots of use of gcd’s in what
follows.

Some immediate consequences of the definition of gcd are that for n > 0,

gcd.n; n/ D n; gcd.n; 1/ D 1; gcd.n; 0/ D n;

where the last equality follows from the fact that everything is a divisor of 0.

“mcs” — 2015/5/18 — 1:43 — page 249 — #257

8.2. The Greatest Common Divisor 249

8.2.1 Euclid’s Algorithm
The first thing to figure out is how to find gcd’s. A good way called Euclid’s
algorithm has been known for several thousand years. It is based on the following
elementary observation.

Lemma 8.2.1. For b ¤ 0,

gcd.a; b/ D gcd.b; rem.a; b//:

Proof. By the Division Theorem 8.1.4,

a D qb C r (8.2)

where r D rem.a; b/. So a is a linear combination of b and r , which implies that
any divisor of b and r is a divisor of a by Lemma 8.1.2.2. Likewise, r is a linear
combination, a � qb, of a and b, so any divisor of a and b is a divisor of r . This
means that a and b have the same common divisors as b and r , and so they have
the same greatest common divisor. ⌅

Lemma 8.2.1 is useful for quickly computing the greatest common divisor of
two numbers. For example, we could compute the greatest common divisor of
1147 and 899 by repeatedly applying it:

gcd.1147; 899/ D gcd.899; rem„ .1147ƒ‚; 899/

D248

…/

D gcd .248; rem.899; 248/ D 155/

D gcd .155; rem.248; 155/ D 93/

D gcd .93; rem.155; 93/ D 62/

D gcd .62; rem.93; 62/ D 31/

D gcd .31; rem.62; 31/ D 0/

D 31

This calculation that gcd.1147; 899/ D 31 was how we figured out that with water
jugs of sizes 1147 and 899, Bruce dies trying to get 32 gallons.

On the other hand, applying Euclid’s algorithm to 26 and 21 gives

gcd.26; 21/ D gcd.21; 5/ D gcd.5; 1/ D 1;

so we can’t use the reasoning above to rule out Bruce getting 3 gallons into the big
jug. As a matter of fact, because the gcd here is 1, Bruce will be able to get any
number of gallons into the big jug up to its capacity. To explain this, we will need
a little more number theory.

“mcs” — 2015/5/18 — 1:43 — page 250 — #258

250 Chapter 8 Number Theory

Euclid’s Algorithm as a State Machine

Euclid’s algorithm can easily be formalized as a state machine. The set of states is
N2 and there is one transition rule:

.x; y/ �! .y; rem.x; y//; (8.3)

for y > 0. By Lemma 8.2.1, the gcd stays the same from one state to the next. That
means the predicate

gcd.x; y/ D gcd.a; b/

is a preserved invariant on the states .x; y/. This preserved invariant is, of course,
true in the start state .a; b/. So by the Invariant Principle, if y ever becomes 0, the
invariant will be true and so

x D gcd.x; 0/ D gcd.a; b/:

Namely, the value of x will be the desired gcd.
What’s more, x, and therefore also y, gets to be 0 pretty fast. To see why, note

that starting from .x; y/, two transitions leads to a state whose the first coordinate
is rem.x; y/, which is at most half the size of x.3 Since x starts off equal to a and
gets halved or smaller every two steps, it will reach its minimum value—which is
gcd.a; b/—after at most 2 log a transitions. After that, the algorithm takes at most
one more transition to terminate. In other words, Euclid’s algorithm terminates
after at most 1C 2 log a transitions.4

8.2.2 The Pulverizer
We will get a lot of mileage out of the following key fact:

Theorem 8.2.2. The greatest common divisor of a and b is a linear combination
of a and b. That is,

gcd.a; b/ D saC tb;

for some integers s and t .

We already know from Lemma 8.1.2.2 that every linear combination of a and b is
divisible by any common factor of a and b, so it is certainly divisible by the greatest

3In other words,
rem.x; y/ x=2 for 0 < y x: (8.4)

This is immediate if y x=2, since the remainder of x divided by y is less than y by definition. On
the other hand, if y > x=2, then rem.x; y/ D x

4
� y < x=2.

A tighter analysis shows that at most log'.a/ transitions are possible where ' is the golden ratio
.1

p
C 5/=2, see Problem 8.14.

“mcs” — 2015/5/18 — 1:43 — page 251 — #259

8.2. The Greatest Common Divisor 251

of these common divisors. Since any constant multiple of a linear combination is
also a linear combination, Theorem 8.2.2 implies that any multiple of the gcd is a
linear combination, giving:

Corollary 8.2.3. An integer is a linear combination of a and b iff it is a multiple of
gcd.a; b/.

We’ll prove Theorem 8.2.2 directly by explaining how to find s and t . This
job is tackled by a mathematical tool that dates back to sixth-century India, where
it was called kuttak, which means “The Pulverizer.” Today, the Pulverizer is more
commonly known as “the extended Euclidean gcd algorithm,” because it is so close
to Euclid’s algorithm.

For example, following Euclid’s algorithm, we can compute the gcd of 259
and 70 as follows:

gcd.259; 70/ D gcd.70; 49/ since rem.259; 70/ D 49

D gcd.49; 21/ since rem.70; 49/ D 21

D gcd.21; 7/ since rem.49; 21/ D 7

D gcd.7; 0/ since rem.21; 7/ D 0

D 7:

The Pulverizer goes through the same steps, but requires some extra bookkeeping
along the way: as we compute gcd.a; b/, we keep track of how to write each of
the remainders (49, 21, and 7, in the example) as a linear combination of a and b.
This is worthwhile, because our objective is to write the last nonzero remainder,
which is the GCD, as such a linear combination. For our example, here is this extra
bookkeeping:

x y .rem.x; y// D x � q � y
259 70 49 D a � 3 � b
70 49 21 D b � 1 � 49

D b � 1 � .a � 3 � b/

D �1 � aC 4 � b
49 21 7 D 49 � 2 � 21

D .a � 3 � b/ � 2 � .�1 � aC 4 � b/

D 3 � a � 11 � b
21 7 0

We began by initializing two variables, x D a and y D b. In the first two columns
above, we carried out Euclid’s algorithm. At each step, we computed rem.x; y/

which equals x � qcnt.x; y/ � y. Then, in this linear combination of x and y, we

“mcs” — 2015/5/18 — 1:43 — page 252 — #260

252 Chapter 8 Number Theory

replaced x and y by equivalent linear combinations of a and b, which we already
had computed. After simplifying, we were left with a linear combination of a and
b equal to rem.x; y/, as desired. The final solution is boxed.

This should make it pretty clear how and why the Pulverizer works. If you have
doubts, it may help to work through Problem 8.13, where the Pulverizer is formal-
ized as a state machine and then verified using an invariant that is an extension of
the one used for Euclid’s algorithm.

Since the Pulverizer requires only a little more computation than Euclid’s algo-
rithm, you can “pulverize” very large numbers very quickly by using this algorithm.
As we will soon see, its speed makes the Pulverizer a very useful tool in the field
of cryptography.

Now we can restate the Water Jugs Lemma 8.1.5 in terms of the greatest common
divisor:

Corollary 8.2.4. Suppose that we have water jugs with capacities a and b. Then
the amount of water in each jug is always a multiple of gcd.a; b/.

For example, there is no way to form 4 gallons using 3- and 6-gallon jugs, be-
cause 4 is not a multiple of gcd.3; 6/ D 3.

8.2.3 One Solution for All Water Jug Problems
Corollary 8.2.3 says that 3 can be written as a linear combination of 21 and 26,
since 3 is a multiple of gcd.21; 26/ D 1. So the Pulverizer will give us integers s

and t such that
3 D s � 21C t � 26 (8.5)

The coefficient s could be either positive or negative. However, we can readily
transform this linear combination into an equivalent linear combination

3 D s0 � 21C t 0 � 26 (8.6)

where the coefficient s0 is positive. The trick is to notice that if in equation (8.5) we
increase s by 26 and decrease t by 21, then the value of the expression s �21C t �26

is unchanged overall. Thus, by repeatedly increasing the value of s (by 26 at a
time) and decreasing the value of t (by 21 at a time), we get a linear combination
s0 � 21C t 0 � 26 D 3 where the coefficient s0 is positive. (Of course t 0 must then be
negative; otherwise, this expression would be much greater than 3.)

Now we can form 3 gallons using jugs with capacities 21 and 26: We simply
repeat the following steps s0 times:

1. Fill the 21-gallon jug.

“mcs” — 2015/5/18 — 1:43 — page 253 — #261

8.2. The Greatest Common Divisor 253

2. Pour all the water in the 21-gallon jug into the 26-gallon jug. If at any time
the 26-gallon jug becomes full, empty it out, and continue pouring the 21-
gallon jug into the 26-gallon jug.

At the end of this process, we must have emptied the 26-gallon jug exactly �t 0

times. Here’s why: we’ve taken s0 � 21 gallons of water from the fountain, and
we’ve poured out some multiple of 26 gallons. If we emptied fewer than �t 0 times,
then by (8.6), the big jug would be left with at least 3C 26 gallons, which is more
than it can hold; if we emptied it more times, the big jug would be left containing
at most 3�26 gallons, which is nonsense. But once we have emptied the 26-gallon
jug exactly �t 0 times, equation (8.6) implies that there are exactly 3 gallons left.

Remarkably, we don’t even need to know the coefficients s0 and t 0 in order to
use this strategy! Instead of repeating the outer loop s0 times, we could just repeat
until we obtain 3 gallons, since that must happen eventually. Of course, we have to
keep track of the amounts in the two jugs so we know when we’re done. Here’s the
solution using this approach starting with empty jugs, that is, at .0; 0/:

fill 21 pour 21 into 26���! .21; 0/
fill 21

��
pour
���

21
��

to
�

26
�! .0; 21/

empty 26 pour 21 to 26���! .21; 21/ ������� .16; 26/ .16; 0/ .0; 16/
fill 21 pour 21 to 26

! ��
empty
���

26
! ��

pour
��

21
��

to
�

26
!

��
fill
�! .21; 16/ �������! .11; 26/
21 pour 21 to 26

��
empty
���

26
! .11; 0/ ��

pour
��

21
��

to
�

26
! .0; 11/

��� .21; 11/ .6; 26/ .6; 0/ .0; 6/
fill 21
! ��

pour
��

21
��

to
�

26
! ��

empty
���

26
! ��

pour
��

21
��

to
�

26
!

���! .21; 6/ �������! .1; 26/ �����! .1; 0/
fill 21 pour 21 to 26

�������! .0; 1/

���! .21; 1/ �������! .0; 22/
fill 21 pour 21 to 26 empty 26 pour 21 to 26��
fill
�! .21; 22/ �������! .17; 26/ �����! .17; 0/
21 pour 21 to 26 empty 26

��
pour
�����! .0; 17/

21 to 26��
fill
�
21
! .21; 17/ �������! .12; 26/

pour 21 to 26
��
empty
���

26
! .12; 0/ ��� ���! .0; 12/

pour
�
21 to 26���! .21; 12/ �������! .7; 26/ �����! .7; 0/

to
������� .0; 7/

fill 21 pour 21 26 empty 26 pour 21 to 26
!

��� .21;
fill
! 7/
21

��
pour
��

21
���! .2; 26/ �����! .2; 0/ �������! .0; 2/

to 26��
fill
�
21
! .21; 2/ ��

pour
��

21
�� .0; 23/

to
�

26
!

empty 26 pour 21 to 26���! .21; 23/
fill 21

��
pour
��

21
��

to
� .18; 18/

26
! .18; 26/ ����� 0/ .0;

empty 26
! ��

pour
��

21
��

to
�

26
!

���! .21; 18/
fill 21

��
pour
��

21
��

to
�

26
! .13; 26/ ��

empty
���! .13; 0/ ��� ���! .0; 13/

26 pour
�
21 to 26��� .21; 13/ .8; 26/ .8; 0/ .0; 8/

fill 21
! ��

pour
��

21
��

to
�

26
! ��

empty
���

26
! ��

pour
��

21
��

to
�

26
!

���! .21; 8/ �������! .3; 26/ �����! .3; 0/ �������! .0; 3/

The same approach works regardless of the jug capacities and even regardless of
the amount we’re trying to produce! Simply repeat these two steps until the desired
amount of water is obtained:

“mcs” — 2015/5/18 — 1:43 — page 254 — #262

254 Chapter 8 Number Theory

1. Fill the smaller jug.

2. Pour all the water in the smaller jug into the larger jug. If at any time the
larger jug becomes full, empty it out, and continue pouring the smaller jug
into the larger jug.

By the same reasoning as before, this method eventually generates every multiple—
up to the size of the larger jug—of the greatest common divisor of the jug capacities,
all the quantities we can possibly produce. No ingenuity is needed at all!

So now we have the complete water jug story:

Theorem 8.2.5. Suppose that we have water jugs with capacities a and b. For
any c 2 Œ0::aç, it is possible to get c gallons in the size a jug iff c is a multiple of
gcd.a; b/.

8.3 Prime Mysteries

Some of the greatest mysteries and insights in number theory concern properties of
prime numbers:

Definition 8.3.1. A prime is a number greater than 1 that is divisible only by itself
and 1. A number other than 0, 1, and �1 that is not a prime is called composite.5

Here are three famous mysteries:

Twin Prime Conjecture There are infinitely many primes p such that pC2 is also
a prime.

In 1966, Chen showed that there are infinitely many primes p such that pC2

is the product of at most two primes. So the conjecture is known to be almost
true!

Conjectured Inefficiency of Factoring Given the product of two large primes n D
pq, there is no efficient procedure to recover the primes p and q. That is,
no polynomial time procedure (see Section 3.5) is guaranteed to find p and
q in a number of steps bounded by a polynomial in the length of the binary
representation of n (not n itself). The length of the binary representation at
most 1C log2 n.

5So 0, 1, and �1 are the only integers that are neither prime nor composite.

“mcs” — 2015/5/18 — 1:43 — page 255 — #263

8.3. Prime Mysteries 255

The best algorithm known is the “number field sieve,” which runs in time
proportional to:

e1:9.ln n/1=3.ln ln n/2=3

:

This number grows more rapidly than any polynomial in log n and is infea-
sible when n has 300 digits or more.

Efficient factoring is a mystery of particular importance in computer science,
as we’ll explain later in this chapter.

Goldbach’s Conjecture We’ve already mentioned Goldbach’s Conjecture 1.1.8 sev-
eral times: every even integer greater than two is equal to the sum of two
primes. For example, 4 D 2C 2, 6 D 3C 3, 8 D 3C 5, etc.

In 1939, Schnirelman proved that every even number can be written as the
sum of not more than 300,000 primes, which was a start. Today, we know
that every even number is the sum of at most 6 primes.

Primes show up erratically in the sequence of integers. In fact, their distribution
seems almost random:

2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41; 43; : : : :

One of the great insights about primes is that their density among the integers has
a precise limit. Namely, let ⇡.n/ denote the number of primes up to n:

Definition 8.3.2.
⇡.n/ WWD jfp 2 Œ2::nç j p is primegj:

For example, ⇡.1/ D 0; ⇡.2/ D 1, and ⇡.10/ D 4 because 2, 3, 5, and 7 are the
primes less than or equal to 10. Step by step, ⇡ grows erratically according to the
erratic spacing between successive primes, but its overall growth rate is known to
smooth out to be the same as the growth of the function n= ln n:

Theorem 8.3.3 (Prime Number Theorem).

⇡.n/
lim

n!1 n= ln n
D 1:

Thus, primes gradually taper off. As a rule of thumb, about 1 integer out of every
ln n in the vicinity of n is a prime.

The Prime Number Theorem was conjectured by Legendre in 1798 and proved
a century later by de la Vallee´ Poussin and Hadamard in 1896. However, after his
death, a notebook of Gauss was found to contain the same conjecture, which he

“mcs” — 2015/5/18 — 1:43 — page 256 — #264

256 Chapter 8 Number Theory

apparently made in 1791 at age 15. (You have to feel sorry for all the otherwise
“great” mathematicians who had the misfortune of being contemporaries of Gauss.)

A proof of the Prime Number Theorem is beyond the scope of this text, but there
is a manageable proof (see Problem 8.22) of a related result that is sufficient for our
applications:

Theorem 8.3.4 (Chebyshev’s Theorem on Prime Density). For n > 1,

n
⇡.n/ > :

3 ln n

A Prime for Google

In late 2004 a billboard appeared in various locations around the country:

⇢
first 10-digit prime found

�
. comin consecutive digits of e

Substituting the correct number for the expression in curly-braces produced the
URL for a Google employment page. The idea was that Google was interested in
hiring the sort of people that could and would solve such a problem.
How hard is this problem? Would you have to look through thousands or millions
or billions of digits of e to find a 10-digit prime? The rule of thumb derived from
the Prime Number Theorem says that among 10-digit numbers, about 1 in

ln 1010 ⇡ 23

is prime. This suggests that the problem isn’t really so hard! Sure enough, the
first 10-digit prime in consecutive digits of e appears quite early:

e D2:718281828459045235360287471352662497757247093699959574966

9676277240766303535475945713821785251664274274663919320030

599218174135966290435729003342952605956307381323286279434 : : :

“mcs” — 2015/5/18 — 1:43 — page 257 — #265

8.4. The Fundamental Theorem of Arithmetic 257

8.4 The Fundamental Theorem of Arithmetic

There is an important fact about primes that you probably already know: every
positive integer number has a unique prime factorization. So every positive integer
can be built up from primes in exactly one way. These quirky prime numbers are
the building blocks for the integers.

Since the value of a product of numbers is the same if the numbers appear in a
different order, there usually isn’t a unique way to express a number as a product
of primes. For example, there are three ways to write 12 as a product of primes:

12 D 2 � 2 � 3 D 2 � 3 � 2 D 3 � 2 � 2:

What’s unique about the prime factorization of 12 is that any product of primes
equal to 12 will have exactly one 3 and two 2’s. This means that if we sort the
primes by size, then the product really will be unique.

Let’s state this more carefully. A sequence of numbers is weakly decreasing
when each number in the sequence is at least as big as the numbers after it. Note
that a sequence of just one number as well as a sequence of no numbers—the empty
sequence —is weakly decreasing by this definition.

Theorem 8.4.1. [Fundamental Theorem of Arithmetic] Every positive integer is a
product of a unique weakly decreasing sequence of primes.

For example, 75237393 is the product of the weakly decreasing sequence of
primes

23; 17; 17; 11; 7; 7; 7; 3;

and no other weakly decreasing sequence of primes will give 75237393.6

Notice that the theorem would be false if 1 were considered a prime; for example,
15 could be written as 5 � 3, or 5 � 3 � 1, or 5 � 3 � 1 � 1,

There is a certain wonder in unique factorization, especially in view of the prime
number mysteries we’ve already mentioned. It’s a mistake to take it for granted,
even if you’ve known it since you were in a crib. In fact, unique factorization
actually fails for many integer-like sets of numbers, such as the complex numbers
of the form nCm

p
�5 for m; n 2 Z (see Problem 8.25).

The Fundamental Theorem is also called the Unique Factorization Theorem,
which is a more descriptive and less pretentious, name—but we really want to get
your attention to the importance and non-obviousness of unique factorization.

6The “product” of just one number is defined to be that number, and the product of no numbers is
by convention defined to be 1. So each prime, p, is uniquely the product of the primes in the length-
one sequence consisting solely of p, and 1, which you will remember is not a prime, is uniquely the
product of the empty sequence.

“mcs” — 2015/5/18 — 1:43 — page 258 — #266

258 Chapter 8 Number Theory

8.4.1 Proving Unique Factorization
The Fundamental Theorem is not hard to prove, but we’ll need a couple of prelim-
inary facts.

Lemma 8.4.2. If p is a prime and p j ab, then p j a or p j b.

Lemma 8.4.2 follows immediately from Unique Factorization: the primes in the
product ab are exactly the primes from a and from b. But proving the lemma this
way would be cheating: we’re going to need this lemma to prove Unique Factoriza-
tion, so it would be circular to assume it. Instead, we’ll use the properties of gcd’s
and linear combinations to give an easy, noncircular way to prove Lemma 8.4.2.

Proof. One case is if gcd.a; p/ D p. Then the claim holds, because a is a multiple
of p.

Otherwise, gcd.a; p/ ¤ p. In this case gcd.a; p/ must be 1, since 1 and p are
the only positive divisors of p. Now gcd.a; p/ is a linear combination of a and p,
so we have 1 D sa C tp for some s; t . Then b D s.ab/ C .tb/p, that is, b is a
linear combination of ab and p. Since p divides both ab and p, it also divides their
linear combination b. ⌅

A routine induction argument extends this statement to:

Lemma 8.4.3. Let p be a prime. If p j a1a2 � � � an, then p divides some ai .

Now we’re ready to prove the Fundamental Theorem of Arithmetic.

Proof. Theorem 2.3.1 showed, using the Well Ordering Principle, that every posi-
tive integer can be expressed as a product of primes. So we just have to prove this
expression is unique. We will use Well Ordering to prove this too.

The proof is by contradiction: assume, contrary to the claim, that there exist
positive integers that can be written as products of primes in more than one way.
By the Well Ordering Principle, there is a smallest integer with this property. Call
this integer n, and let

n D p1 � p2 � � �pj ;

D q1 � q2 � � � qk;

where both products are in weakly decreasing order and p1 q1.
If q1 D p1, then n=q1 would also be the product of different weakly decreasing

sequences of primes, namely,

p2 � � �pj ;

q2 qk :� � �

“mcs” — 2015/5/18 — 1:43 — page 259 — #267

8.5. Alan Turing 259

Figure 8.1 Alan Turing

Since n=q1 < n, this can’t be true, so we conclude that p1 < q1.
Since the pi ’s are weakly decreasing, all the pi ’s are less than q1. But

q1 j n D p1 � p2 � � �pj ;

so Lemma 8.4.3 implies that q1 divides one of the pi ’s, which contradicts the fact
that q1 is bigger than all them. ⌅

8.5 Alan Turing

The man pictured in Figure 8.1 is Alan Turing, the most important figure in the
history of computer science. For decades, his fascinating life story was shrouded
by government secrecy, societal taboo, and even his own deceptions.

At age 24, Turing wrote a paper entitled On Computable Numbers, with an Ap-
plication to the Entscheidungsproblem. The crux of the paper was an elegant way
to model a computer in mathematical terms. This was a breakthrough, because it
allowed the tools of mathematics to be brought to bear on questions of computation.
For example, with his model in hand, Turing immediately proved that there exist
problems that no computer can solve—no matter how ingenious the programmer.
Turing’s paper is all the more remarkable because he wrote it in 1936, a full decade

“mcs” — 2015/5/18 — 1:43 — page 260 — #268

260 Chapter 8 Number Theory

before any electronic computer actually existed.
The word “Entscheidungsproblem” in the title refers to one of the 28 mathemat-

ical problems posed by David Hilbert in 1900 as challenges to mathematicians of
the 20th century. Turing knocked that one off in the same paper. And perhaps
you’ve heard of the “Church-Turing thesis”? Same paper. So Turing was a brilliant
guy who generated lots of amazing ideas. But this lecture is about one of Turing’s
less-amazing ideas. It involved codes. It involved number theory. And it was sort
of stupid.

Let’s look back to the fall of 1937. Nazi Germany was rearming under Adolf
Hitler, world-shattering war looked imminent, and—like us —Alan Turing was
pondering the usefulness of number theory. He foresaw that preserving military
secrets would be vital in the coming conflict and proposed a way to encrypt com-
munications using number theory. This is an idea that has ricocheted up to our own
time. Today, number theory is the basis for numerous public-key cryptosystems,
digital signature schemes, cryptographic hash functions, and electronic payment
systems. Furthermore, military funding agencies are among the biggest investors
in cryptographic research. Sorry, Hardy!

Soon after devising his code, Turing disappeared from public view, and half a
century would pass before the world learned the full story of where he’d gone and
what he did there. We’ll come back to Turing’s life in a little while; for now, let’s
investigate the code Turing left behind. The details are uncertain, since he never
formally published the idea, so we’ll consider a couple of possibilities.

8.5.1 Turing’s Code (Version 1.0)
The first challenge is to translate a text message into an integer so we can perform
mathematical operations on it. This step is not intended to make a message harder
to read, so the details are not too important. Here is one approach: replace each
letter of the message with two digits (A D 01, B D 02, C D 03, etc.) and string all
the digits together to form one huge number. For example, the message “victory”
could be translated this way:

v i c t o r y
! 22 09 03 20 15 18 25

Turing’s code requires the message to be a prime number, so we may need to pad
the result with some more digits to make a prime. The Prime Number Theorem
indicates that padding with relatively few digits will work. In this case, appending
the digits 13 gives the number 2209032015182513, which is prime.

Here is how the encryption process works. In the description below, m is the
unencoded message (which we want to keep secret), m

(which
b is the encrypted message

the Nazis may intercept), and k is the key.

“mcs” — 2015/5/18 — 1:43 — page 261 — #269

8.5. Alan Turing 261

Beforehand The sender and receiver agree on a secret key, which is a large prime k.

Encryption The sender encrypts the message m by computing:

mb D m � k

Decryption The receiver decrypts mb by computing:

mb
k
D m:

For example, suppose that the secret key is the prime number k D 22801763489

and the message m is “victory.” Then the encrypted message is:

mb D m � k
D 2209032015182513 � 22801763489

D 50369825549820718594667857

There are a couple of basic questions to ask about Turing’s code.

1. How can the sender and receiver ensure that m and k are prime numbers, as
required?

The general problem of determining whether a large number is prime or com-
posite has been studied for centuries, and tests for primes that worked well
in practice were known even in Turing’s time. In the past few decades, very
fast primality tests have been found as described in the text box below.

2. Is Turing’s code secure?

The Nazis see only the encrypted message m D m � k, so recovering the
original message m requires factoring mb. Despite
ef

b
immense efforts, no really

ficient factoring algorithm has ever been found. It appears to be a funda-
mentally difficult problem. So, although a breakthrough someday can’t be
ruled out, the conjecture that there is no efficient way to factor is widely
accepted. In effect, Turing’s code puts to practical use his discovery that
there are limits to the power of computation. Thus, provided m and k are
sufficiently large, the Nazis seem to be out of luck!

This all sounds promising, but there is a major flaw in Turing’s code.

“mcs” — 2015/5/18 — 1:43 — page 262 — #270

262 Chapter 8 Number Theory

Primality Testing

It’s easy⌅ tŏ see that an integer is prime iff it is not divisible by any number from
2 to

p n

n (see Problem 1.9). Of course this naive way to test if n is prime takes
more than

p
n steps, which is exponential in the size of n measured by the number

of digits in the decimal or binary representation of n. Through the early 1970’s,
no prime testing procedure was known that would never blow up like this.
In 1974, Volker Strassen invented a simple, fast probabilistic primality test.
Strassens’s test gives the right answer when applied to any prime number, but
has some probability of giving a wrong answer on a nonprime number. However,
the probability of a wrong answer on any given number is so tiny that relying on
the answer is the best bet you’ll ever make.
Still, the theoretical possibility of a wrong answer was intellectually
bothersome—even if the probability of being wrong was a lot less than the prob-
ability of an undetectable computer hardware error leading to a wrong answer.
Finally in 2002, in a breakthrough paper beginning with a quote from Gauss em-
phasizing the importance and antiquity of primality testing, Manindra Agrawal,
Neeraj Kayal, and Nitin Saxena presented an amazing, thirteen line description of
a polynomial time primality test.
This definitively places primality testing way below the exponential effort ap-
parently needed for SAT and similar problems. The polynomial bound on the
Agrawal et al. test had degree 12, and subsequent research has reduced the de-
gree to 5, but this is still too large to be practical, and probabilistic primality tests
remain the method used in practice today. It’s plausible that the degree bound can
be reduced a bit more, but matching the speed of the known probabilistic tests
remains a daunting challenge.

“mcs” — 2015/5/18 — 1:43 — page 263 — #271

8.6. Modular Arithmetic 263

8.5.2 Breaking Turing’s Code (Version 1.0)
Let’s consider what happens when the sender transmits a second message using
Turing’s code and the same key. This gives the Nazis two encrypted messages to
look at:

mc1 D m1 � k and mc2 D m2 � k
The greatest common divisor of the two encrypted messages, mc1 and mc2, is the
secret key k. And, as we’ve seen, the GCD of two numbers can be computed very
efficiently. So after the second message is sent, the Nazis can recover the secret key
and read every message!

A mathematician as brilliant as Turing is not likely to have overlooked such a
glaring problem, and we can guess that he had a slightly different system in mind,
one based on modular arithmetic.

MIT OpenCourseWare
https://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science
Spring 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

