
“mcs” — 2015/5/18 — 1:43 — page 327 — #335

9.5 Directed Acyclic Graphs & Scheduling

Some of the prerequisites of MIT computer science subjects are shown in Fig-
ure 9.6. An edge going from subject s to subject t indicates that s is listed in the
catalogue as a direct prerequisite of t . Of course, before you can take subject t ,
you have to take not only subject s, but also all the prerequisites of s, and any pre-
requisites of those prerequisites, and so on. We can state this precisely in terms of
the positive walk relation: if D is the direct prerequisite relation on subjects, then
subject u has to be completed before taking subject v iff u DC v.

Of course it would take forever to graduate if this direct prerequisite graph had
a positive length closed walk. We need to forbid such closed walks, which by
Lemma 9.2.6 is the same as forbidding cycles. So, the direct prerequisite graph
among subjects had better be acyclic:

Definition 9.5.1. A directed acyclic graph (DAG) is a directed graph with no cy-
cles.

DAGs have particular importance in computer science. They capture key con-
cepts used in analyzing task scheduling and concurrency control. When distributing
a program across multiple processors, we’re in trouble if one part of the program
needs an output that another part hasn’t generated yet! So let’s examine DAGs and
their connection to scheduling in more depth.

“mcs” — 2015/5/18 — 1:43 — page 328 — #336

328 Chapter 9 Directed graphs & Partial Orders

All subjects are 12 units6.UAT
6 units

6.UAT
6 units

6.UAT6.UAT
6 units6 units

6.UAP
6 units

6.UAP
6 units

6.UAP6.UAP
6 units6 units

Subjects

Advanced Undergraduate Subjects
AUS

Advanced Undergraduate Subjects
AUS

Advanced Undergraduate SubjectsAdvanced Undergraduate Subjects
AUS AUS 2

1

3
Header

6.033
comp sys
6.033
comp sys
6.0336.033
comp syscomp sys

6.034
AI

6.034
AI

6.0346.034
AIAI

6.046
adv algorithms

6.046
adv algoradv algoradv ithms

6.0466.046
adv algorithmsadv algorithms

6.006*
algorithms
6.006*
algorithms
6.006*6.006*
algorithmsalgorithms

6.01*
intro EECS I
6.01*

intro EECS I
6.01*6.01*

intro EECS Iintro EECS I
6.02*

intro EECS II
6.02*

intro EECS II
6.02*6.02*

intro EECS IIintro EECS II

Software LabSoftware LabSoftware LabSoftware Lab

8.028.028.028.02

coreq

6.004
comp architecture

6.004
comp architecture

6.0046.004
comp architecturecomp architecture

coreq

3
Foundation

½ + ½

2
Introductory
(= 1 Institute Lab)

2
Math

(= 2 REST)

Elementary
exposure to programming
(high school, IAP, or 6.00)

Elementary
exposure to programming
(high school, IAP, or 6.00) r 6.00)

Elementary Elementary
exposure to programmingexposure to programming
(high school, IAP, or 6.00)(high school, IAP, or 6.00)*new subjectJune 2009

18.06 or 18.03

18.06
linear algebra
18.06

linear alger alger bra
18.0618.06

linear algebralinear algebra
18.03
diff eqs
18.03
diff eqs
18.0318.03
diff diff eqseqs

6.042
discrete math
6.042

discrete math
6.0426.042

discrete mathdiscrete math

6.005*
software

6.005* 6.005*
software

6.005*6.005*
softwaresoftware

Figure 9.6 Subject prerequisites for MIT Computer Science (6-3) Majors.

 6.00) r

New 6-3: SB in Computer Science and Engineering

“mcs” — 2015/5/18 — 1:43 — page 329 — #337

9.5. Directed Acyclic Graphs & Scheduling 329

left sock right sock underwear shirt

pants tie

left shoe right shoe belt

jacket

Figure 9.7 DAG describing which clothing items have to be put on before others.

9.5.1 Scheduling
In a scheduling problem, there is a set of tasks, along with a set of constraints
specifying that starting certain tasks depends on other tasks being completed be-
forehand. We can map these sets to a digraph, with the tasks as the nodes and the
direct prerequisite constraints as the edges.

For example, the DAG in Figure 9.7 describes how a man might get dressed for
a formal occasion. As we describe above, vertices correspond to garments and the
edges specify which garments have to be put on before which others.

When faced with a set of prerequisites like this one, the most basic task is finding
an order in which to perform all the tasks, one at a time, while respecting the
dependency constraints. Ordering tasks in this way is known as topological sorting.

Definition 9.5.2. A topological sort of a finite DAG is a list of all the vertices such
that each vertex v appears earlier in the list than every other vertex reachable from
v.

There are many ways to get dressed one item at a time while obeying the con-
straints of Figure 9.7. We have listed two such topological sorts in Figure 9.8. In

“mcs” — 2015/5/18 — 1:43 — page 330 — #338

330 Chapter 9 Directed graphs & Partial Orders

underwear left sock
shirt shirt
pants tie
belt underwear
tie right sock

jacket pants
left sock right shoe

right sock belt
left shoe jacket

right shoe left shoe

(a) (b)

Figure 9.8 Two possible topological sorts of the prerequisites described in Fig-
ure 9.7

.

fact, we can prove that every finite DAG has a topological sort. You can think of
this as a mathematical proof that you can indeed get dressed in the morning.

Topological sorts for finite DAGs are easy to construct by starting from minimal
elements:

Definition 9.5.3. An vertex v of a DAG, D, is minimum iff every other vertex is
reachable from v.

A vertex v is minimal iff v is not reachable from any other vertex.

It can seem peculiar to use the words “minimum” and “minimal” to talk about
vertices that start paths. These words come from the perspective that a vertex is
“smaller” than any other vertex it connects to. We’ll explore this way of thinking
about DAGs in the next section, but for now we’ll use these terms because they are
conventional.

One peculiarity of this terminology is that a DAG may have no minimum element
but lots of minimal elements. In particular, the clothing example has four minimal
elements: leftsock, rightsock, underwear, and shirt.

To build an order for getting dressed, we pick one of these minimal elements—
say, shirt. Now there is a new set of minimal elements; the three elements we didn’t
chose as step 1 are still minimal, and once we have removed shirt, tie becomes
minimal as well. We pick another minimal element, continuing in this way until all
elements have been picked. The sequence of elements in the order they were picked
will be a topological sort. This is how the topological sorts above were constructed.

So our construction shows:

“mcs” — 2015/5/18 — 1:43 — page 331 — #339

9.5. Directed Acyclic Graphs & Scheduling 331

Theorem 9.5.4. Every finite DAG has a topological sort.

There are many other ways of constructing topological sorts. For example, in-
stead of starting from the minimal elements at the beginning of paths, we could
build a topological sort starting from maximal elements at the end of paths. In fact,
we could build a topological sort by picking vertices arbitrarily from a finite DAG
and simply inserting them into the list wherever they will fit.5

9.5.2 Parallel Task Scheduling
For task dependencies, topological sorting provides a way to execute tasks one after
another while respecting those dependencies. But what if we have the ability to
execute more than one task at the same time? For example, say tasks are programs,
the DAG indicates data dependence, and we have a parallel machine with lots of
processors instead of a sequential machine with only one. How should we schedule
the tasks? Our goal should be to minimize the total time to complete all the tasks.
For simplicity, let’s say all the tasks take the same amount of time and all the
processors are identical.

So given a finite set of tasks, how long does it take to do them all in an optimal
parallel schedule? We can use walk relations on acyclic graphs to analyze this
problem.

In the first unit of time, we should do all minimal items, so we would put on our
left sock, our right sock, our underwear, and our shirt.6 In the second unit of time,
we should put on our pants and our tie. Note that we cannot put on our left or right
shoe yet, since we have not yet put on our pants. In the third unit of time, we should
put on our left shoe, our right shoe, and our belt. Finally, in the last unit of time,
we can put on our jacket. This schedule is illustrated in Figure 9.9.

The total time to do these tasks is 4 units. We cannot do better than 4 units of
time because there is a sequence of 4 tasks that must each be done before the next.
We have to put on a shirt before pants, pants before a belt, and a belt before a jacket.
Such a sequence of items is known as a chain.

Definition 9.5.5. Two vertices in a DAG are comparable when one of them is
reachable from the other. A chain in a DAG is a set of vertices such that any two of
them are comparable. A vertex in a chain that is reachable from all other vertices
in the chain is called a maximum element of the chain. A finite chain is said to end
at its maximum element.

5In fact, the DAG doesn’t even need to be finite, but you’ll be relieved to know that we have no
need to go into this.

6Yes, we know that you can’t actually put on both socks at once, but imagine you are being dressed
by a bunch of robot processors and you are in a big hurry. Still not working for you? Ok, forget about
the clothes and imagine they are programs with the precedence constraints shown in Figure 9.7.

“mcs” — 2015/5/18 — 1:43 — page 332 — #340

332 Chapter 9 Directed graphs & Partial Orders

left sock right sock underwear shirt

pants tie

left shoe right shoe belt

jacket

Figure 9.9 A parallel schedule for the tasks-getting-dressed digraph in Figure 9.7.
The tasks in Ai can be performed in step i for 1 i 4. A chain of 4 tasks (the
critical path in this example) is shown with bold edges.

“mcs” — 2015/5/18 — 1:43 — page 333 — #341

9.5. Directed Acyclic Graphs & Scheduling 333

The time it takes to schedule tasks, even with an unlimited number of processors,
is at least as large as the number of vertices in any chain. That’s because if we used
less time than the size of some chain, then two items from the chain would have to
be done at the same step, contradicting the precedence constraints. For this reason,
a largest chain is also known as a critical path. For example, Figure 9.9 shows the
critical path for the getting-dressed digraph.

In this example, we were able to schedule all the tasks with t steps, where t is
the size of the largest chain. A nice feature of DAGs is that this is always possible!
In other words, for any DAG, there is a legal parallel schedule that runs in t total
steps.

In general, a schedule for performing tasks specifies which tasks to do at succes-
sive steps. Every task, a, has to be scheduled at some step, and all the tasks that
have to be completed before task a must be scheduled for an earlier step. Here’s a
rigorous definition of schedule.

Definition 9.5.6. A partition of a set A is a set of nonempty subsets of A called the
blocks7 of the partition, such that every element of A is in exactly one block.

For example, one possible partition of the set fa; b; c; d; eg into three blocks is

fa; cg fb; eg fdg:

Definition 9.5.7. A parallel schedule for a DAG, D, is a partition of V.D/ into
blocks A0; A1; : : : ; such that when j < k, no vertex in Aj is reachable from any
vertex in Ak . The block Ak is called the set of elements scheduled at step k, and the
time of the schedule is the number of blocks. The maximum number of elements
scheduled at any step is called the number of processors required by the schedule.

A largest chain ending at an element a is called a critical path to a, and the
number of elements less than a in the chain is called the depth of a. So in any
possible parallel schedule, there must be at least depth .a/ steps before task a can
be started. In particular, the minimal elements are precisely the elements with depth
0.

There is a very simple schedule that completes every task in its minimum num-
ber of steps: just use a “greedy” strategy of performing tasks as soon as possible.
Schedule all the elements of depth k at step k. That’s how we found the above
schedule for getting dressed.

7We think it would be nicer to call them the parts of the partition, but “blocks” is the standard
terminology.

“mcs” — 2015/5/18 — 1:43 — page 334 — #342

334 Chapter 9 Directed graphs & Partial Orders

Theorem 9.5.8. A minimum time schedule for a finite DAG D consists of the sets
A0; A1; : : : ; where

Ak WWD fa 2 V.D/ j depth .a/ D kg:

We’ll leave to Problem 9.19 the proof that the sets Ak are a parallel schedule
according to Definition 9.5.7. We can summarize the story above in this way: with
an unlimited number of processors, the parallel time to complete all tasks is simply
the size of a critical path:

Corollary 9.5.9. Parallel time = size of critical path.

Things get more complex when the number of processors is bounded; see Prob-
lem 9.20 for an example.

9.5.3 Dilworth’s Lemma
Definition 9.5.10. An antichain in a DAG is a set of vertices such that no two ele-
ments in the set are comparable—no walk exists between any two different vertices
in the set.

Our conclusions about scheduling also tell us something about antichains.

Corollary 9.5.11. In a DAG, D, if the size of the largest chain is t , then V.D/ can
be partitioned into t antichains.

Proof. Let the antichains be the sets Ak WWD fa 2 V.D/ j depth .a/ D kg. It is an
easy exercise to verify that each Ak is an antichain (Problem 9.19). ⌅

Corollary 9.5.11 implies8 a famous result about acyclic digraphs:

Lemma 9.5.12 (Dilworth). For all t > 0, every DAG with n vertices must have
either a chain of size greater than t or an antichain of size at least n=t .

Proof. Assume that there is no chain of size greater than t . Let ` be the size of
the largest antichain. If we make a parallel schedule according to the proof of
Corollary 9.5.11, we create a number of antichains equal to the size of the largest
chain, which is less than or equal t . Each element belongs to exactly one antichain,
none of which are larger than `. So the total number of elements at most ` times
t—that is, `t � n. Simple division implies that ` � n=t . ⌅

8Lemma 9.5.12 also follows from a more general result known as Dilworth’s Theorem, which we
will not discuss.

“mcs” — 2015/5/18 — 1:43 — page 335 — #343

9.6. Partial Orders 335

Corollary 9.5.13. Every DAG with n vertices has a chain of size greater than
p

n

or an antichain of size at least
p

n.

Proof. Set t
pD n in Lemma 9.5.12. ⌅

Example 9.5.14. When the man in our example is getting dressed, n D 10.
Try t D 3. There is a chain of size 4.
Try t D 4. There is no chain of size 5, but there is an antichain of size 4 � 10=4.

MIT OpenCourseWare
https://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science
Spring 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

