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3.6 Predicate Formulas

3.6.1 Quantifiers
The “for all” notation, 8, has already made an early appearance in Section 1.1. For
example, the predicate

“x2 � 0”
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is always true when x is a real number. That is,

8x 2 R: x2 � 0

is a true statement. On the other hand, the predicate

“5x2 � 7 D 0”

is only sometimes true; specifically, when x D ˙
p

7=5. There is a “there exists”
notation, 9, to indicate that a predicate is true for at least one, but not necessarily
all objects. So

9x 2 R: 5x2 � 7 D 0

is true, while
8x 2 R: 5x2 � 7 D 0

is not true.
There are several ways to express the notions of “always true” and “sometimes

true” in English. The table below gives some general formats on the left and specific
examples using those formats on the right. You can expect to see such phrases
hundreds of times in mathematical writing!

Always True
For all x 2 D, P.x/ is true. For all x 2 R, x2 � 0.
P.x/ is true for every x in the set, D. x2 � 0 for every x 2 R.

Sometimes True
There is an x 2 D such that P.x/ is true. There is an x 2 R such that 5x2 � 7 D 0.
P.x/ is true for some x in the set, D. 5x2 � 7 D 0 for some x 2 R.
P.x/ is true for at least one x 2 D. 5x2 � 7 D 0 for at least one x 2 R.

All these sentences “quantify” how often the predicate is true. Specifically, an
assertion that a predicate is always true is called a universal quantification, and an
assertion that a predicate is sometimes true is an existential quantification. Some-
times the English sentences are unclear with respect to quantification:

If you can solve any problem we come up with,
then you get an A for the course. (3.16)

The phrase “you can solve any problem we can come up with” could reasonably be
interpreted as either a universal or existential quantification:

you can solve every problem we come up with, (3.17)
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or maybe
you can solve at least one problem we come up with. (3.18)

To be precise, let Probs be the set of problems we come up with, Solves.x/ be
the predicate “You can solve problem x,” and G be the proposition, “You get an A
for the course.” Then the two different interpretations of (3.16) can be written as
follows:

.8x 2 Probs: Solves.x// IMPLIES G; for (3.17);
.9x 2 Probs: Solves.x// IMPLIES G: for (3.18):

3.6.2 Mixing Quantifiers
Many mathematical statements involve several quantifiers. For example, we al-
ready described

Goldbach’s Conjecture 1.1.8: Every even integer greater than 2 is the
sum of two primes.

Let’s write this out in more detail to be precise about the quantification:

For every even integer n greater than 2, there exist primes p and q such
that n D p C q.

Let Evens be the set of even integers greater than 2, and let Primes be the set of
primes. Then we can write Goldbach’s Conjecture in logic notation as follows:

8„n 2 Evensƒ‚ …
for every even
integer n > 2

9p 2 Primes 9q 2 Primes:„ ƒ‚ n

there exist primes
p and q such that

… D p C q:

3.6.3 Order of Quantifiers
Swapping the order of different kinds of quantifiers (existential or universal) usually
changes the meaning of a proposition. For example, let’s return to one of our initial,
confusing statements:

“Every American has a dream.”

This sentence is ambiguous because the order of quantifiers is unclear. Let A be
the set of Americans, let D be the set of dreams, and define the predicate H.a; d/

to be “American a has dream d .” Now the sentence could mean there is a single
dream that every American shares—such as the dream of owning their own home:

9 d 2 D 8a 2 A: H.a; d/
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Or it could mean that every American has a personal dream:

8a 2 A 9 d 2 D: H.a; d/

For example, some Americans may dream of a peaceful retirement, while others
dream of continuing practicing their profession as long as they live, and still others
may dream of being so rich they needn’t think about work at all.

Swapping quantifiers in Goldbach’s Conjecture creates a patently false statement
that every even number � 2 is the sum of the same two primes:

9„p 2 Primes 9 q 2 Primes:ƒ‚ …
there exist primes
p and q such that

8n 2 Evens„ ƒ‚ n

for every even
integer n > 2

… D p C q:

3.6.4 Variables Over One Domain
When all the variables in a formula are understood to take values from the same
nonempty set, D, it’s conventional to omit mention of D. For example, instead of
8x 2 D 9y 2 D: Q.x; y/ we’d write 8x9y: Q.x; y/. The unnamed nonempty set
that x and y range over is called the domain of discourse, or just plain domain, of
the formula.

It’s easy to arrange for all the variables to range over one domain. For exam-
ple, Goldbach’s Conjecture could be expressed with all variables ranging over the
domain N as

8n: n 2 Evens IMPLIES .9p 9 q: p 2 Primes AND q 2 Primes AND n D p C q/:

3.6.5 Negating Quantifiers
There is a simple relationship between the two kinds of quantifiers. The following
two sentences mean the same thing:

Not everyone likes ice cream.

There is someone who does not like ice cream.

The equivalence of these sentences is a instance of a general equivalence that holds
between predicate formulas:

NOT.8x: P.x// is equivalent to 9x: NOT.P.x//: (3.19)

Similarly, these sentences mean the same thing:

There is no one who likes being mocked.

Everyone dislikes being mocked.
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The corresponding predicate formula equivalence is

NOT.9x: P.x// is equivalent to 8x: NOT.P.x//: (3.20)

The general principle is that moving a NOT across a quantifier changes the kind of
quantifier. Note that (3.20) follows from negating both sides of (3.19).

3.6.6 Validity for Predicate Formulas
The idea of validity extends to predicate formulas, but to be valid, a formula now
must evaluate to true no matter what the domain of discourse may be, no matter
what values its variables may take over the domain, and no matter what interpreta-
tions its predicate variables may be given. For example, the equivalence (3.19) that
gives the rule for negating a universal quantifier means that the following formula
is valid:

NOT.8x: P.x// IFF 9x: NOT.P.x//: (3.21)

Another useful example of a valid assertion is

9x8y: P.x; y/ IMPLIES 8y9x: P.x; y/: (3.22)

Here’s an explanation why this is valid:

Let D be the domain for the variables and P0 be some binary predi-
cate2 on D. We need to show that if

9x 2 D:8y 2 D: P0.x; y/ (3.23)

holds under this interpretation, then so does

8y 2 D 9x 2 D: P0.x; y/: (3.24)

So suppose (3.23) is true. Then by definition of 9, this means that some
element d0 2 D has the property that

8y 2 D: P0.d0; y/:

By definition of 8, this means that

P0.d0; d /

is true for all d 2 D. So given any d 2 D, there is an element in D,
namely, d0, such that P0.d0; d / is true. But that’s exactly what (3.24)
means, so we’ve proved that (3.24) holds under this interpretation, as
required.

2That is, a predicate that depends on two variables.
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We hope this is helpful as an explanation, but we don’t really want to call it a
“proof.” The problem is that with something as basic as (3.22), it’s hard to see
what more elementary axioms are ok to use in proving it. What the explanation
above did was translate the logical formula (3.22) into English and then appeal to
the meaning, in English, of “for all” and “there exists” as justification.

In contrast to (3.22), the formula

8y9x: P.x; y/ IMPLIES 9x8y: P.x; y/: (3.25)

is not valid. We can prove this just by describing an interpretation where the hy-
pothesis, 8y9x: P.x; y/, is true but the conclusion, 9x8y: P.x; y/, is not true. For
example, let the domain be the integers and P.x; y/ mean x > y. Then the hy-
pothesis would be true because, given a value, n, for y we could choose the value
of x to be nC 1, for example. But under this interpretation the conclusion asserts
that there is an integer that is bigger than all integers, which is certainly false. An
interpretation like this that falsifies an assertion is called a counter model to that
assertion.
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