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L√ Z0 250 
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Problem 1: Part 1: Chapter 3, Problem 3 

The speed of light is c = 1 = 3× 188m/S and line characteristic impedance is Z0 = L = 
C

√
LC 

250Ω, so that 

The 20 kA pulse splits in two, making a pulse that propagates in the +x direction and a 
second pulse that propagates in the negative x direction as shown in Figure 1 

I 

2.5 MV 

10 kA 

x 

Point of strike 

V 

Figure 1: Pulses at about 40 microseconds 

1.5×105mTransit time from the point of the fault to either end is T = 
3×108m/s 

≈ 500µS. When the 

current pulse gets to the shorted end, since the voltage is zero, a reflected pulse is launched 
with opposite voltage sign. This is a positive going pulse, so the current is doubled. At the 
matched end, the first voltage pulse arrives after 150µS. The reflected pulse arrives 1 mS 
after that. This is the end of the story as both pulses are absorbed by the matched resistor. 
This is shown in Figure 2. 

Problem 1: Part 2: Chapter 3, Problem 4 
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open circuit sending end voltage is V Vs 
r = 

cos 
= 500 

93 
≈ 537.8kV. Sending end cur

kl .

I Vs 500kV 
s = tan kl = 

0Ω 
tan .

Z0 25
0 37 792A 

 3×108 300 Wavelength is λ = = 5 × 106

60
m, so for a 300 kilometer line, kl = 2π ×

5000
≈ .377. Then 

rent is 

 
× ≈

For source impedance of zero, voltage and current along the line are: 

ZL cos kx j
Z

sin kx 
V (x) = V 0 

s

−
Zj sin kl + L l 
Z0

cos k
 

Z
Vs cos kx + j L sin kx 

I(x = − Z
l) = 0 

Z ZL 
0 cos kl + j sin kl 

Z0 

   
 

         
 

 

µ20 sec 

I L 

t 

20 kA 

V
r 20 µsec

2.5 MV 

t 

500 µ sec 1500 µ sec 

20 µsec 

Figure 2: Shorted end current and matched end voltage 

Evaluated for ZL = 1 , 1.0 and 1 ,and with source voltage of 500 kV, receiving end voltage 
Z0 0.8 1.2

(at x = 0), sending end voltage and current and sending end current, real and reactive power 
are evaluated by the attached script. The results are: 

Chapter 3, Problem 4

Receiving end open:

Receiving end Voltage = 537764 V, RMS

Sending end Current = 791.856 A, RMS

R = 312.5 Vr = 512662 Is = 1701.9

Pr = 8.4103e+08 Ps = 8.4103e+08 Qs = -1.29538e+08

R = 250 Vr = 500000 Is = 2000

Pr = 1e+09 Ps = 1e+09 Qs = 0

R = 208.333 Vr = 485728 Is = 2282.72

Pr = 1.13247e+09 Ps = 1.13247e+09 Qs = 1.42126e+08


Using the same formulae, with varying receiving end resistance, voltage is plotted in Figure 3. 
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5 Chapter 3, Problem 4, Voltage vs. Loading 
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Figure 3: Receiving End Voltage 

To estimate the effect of compensation, we assume a capacitance in parallel with the receiving 
end, with a capacitive admittance of Yc = 2

V
Q 
2 . This is placed in parallel with the receiving 

end resistance. The voltage at the receiving end is calculated in the normal way and is 
shown in Figure 4. Note there are three curves, corresponding to the three levels of real load. 
Note also that the case of surge impedance loading (2,000 A) has nominal voltage with zero 
compensation. 
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Figure 4: Receiving End Voltage 

Problem 2: We take the easy way out here and let Matlab do all the heavy lifting. Noting that 
the admittance of the line itself is: 

1 
Yc = 

R + jXL 

we can build up the admittance matrix quite easily: 

Yc − X
j 

c 
−Yc

Y = j−Yc Yc − Xc 

Current in the line is

IL = Vs(e

jδ − 1)Yc
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So sending and receiving end complex powers are: 
  

j
(P + jQ)S = |V 2 

s|
�

Yc 
∗ −

X
 c 

�

− |Vs|2Yc 
∗ejδ 

 

(P + jQ) 2 j 2 jδ 
R = −|Vs| 

�

Yc 
∗ −

�

+ Yc 
∗e−

c 
|Vs

X
| 

This is programmed up and shown in Figure 5. Also shown in this figure are the vectors
related to the condition described in the next part, with 7.5 MW real power at the receiving 
end.Vectors from the centers of the power circle to the sending and receiving complex power 
points are plotted in Figure 5. 

The problem of finding the angle for a defined power flow involves solving a transcendental 
function. We could do this in a variety of ways, but MATLAB gives us lazy people a clever 
way of doing it. The function fzero(FOO(X), X0) returns a value of X that makes FOO(X) 
equal to zero. See the script attached for details. The answers are: 

For 7500.0 kW at receiving end

Angle = 0.922506 radians = 52.8557 degrees

Sending end Power = 8.28451e+06

Sending end Reactive = 1.46664e+06

Receiving end Reactive = -3.04509e+06
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Figure 5: Power Circles 

Problem 3: The three phase voltages are: 

va = 
√

2 120 cos(ωt)· 

vb = 
√

2 120 cos(ωt − 2π 
)· 

3 

vc = 
√

2 120 cos(ωt +
2π 

)· 
3 

4 

M
W



                  

Figure 6: Three-Phase Voltages 

C Refer to Figure 6. The voltage across the resistor is: 

  √ 2π π 
vab = va − vb = 2 × 120 

�

cos ωt − cos(ωt − ) = 
√

2
√

× 3 × 277 cos(ωt + ) 
3 6

�

and of course 
√

3 × 120 ≈ 208. So 

      
208 π π π 

ia = −ib = 
√

2 + 

�

= 
√

×
�

cos ωt 2 × .578 cos ≈ os + 
36 6 

�

ωt + .817
0 6 

�

× c

�

ωt
6 

�

and the center point of this source is grounded. 

B We take this one out of order as it is the easiest. The voltages across each of the resistances 
is defined by the matching source, so that: 

ia = 
√

2 cos(ωt)· 

ib = 
√

2 cos(ωt − 2π 
)· 

3 

ic = 
√

2 cos(ωt +
2π 

)· 
3 

A Noting that in part B, the sum of the three currents is zero, the neutral point at the 
junction of the three resistors can (and in fact will be) at zero potential and so the 
currents are exactly the same. 

Va 

V 

V 

V 

Vb 

c 

ab 

Vbc 

ca 

D Since 3 × 120 = 360 this load is equivalent to that of Part A and so the currents are the
same. If you want you can do this the hard way by following the recipe for Part E and 
adding the two resistor currents at each node. 

E This one involves computing the two resistor voltages: 

vab = va − vb = 
√

2 × 120 

� 

cos ωt − cos(ωt − 2
3 

π 
) 

� 

= 
√

2 ×
√

3 × 120 cos(ωt + 
π 

6
) 

vca = vc − va = 
√

2 × 120 

� 

cos(ωt +
4

3 

π 
) − cos ωt 

� 

= 
√

2 ×
√

3 × 120 cos(ωt +
5

6 

π 
) 
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Noting that cos 

�

ωt + 5π 
�

ωt π
6

= − cos 
�

−
6 

�

, we may use the identity: 

π π π 
cos(ωt − ) + cos(ωt + ) = 2 cos ωt cos = 

√
3 cos ωt 

6 6 6 

� � 

and, using the results obtained in Part C,

ia = 
√

2 cos ωt


ib = −
√

2 × .578 cos(ωt + 
π 

6
)


ic = −
√

2 × .578 cos(ωt − π 
)

6


F This is just like case B, except for phase C is not connected:


ia = 
√

2 cos ωt


ib = 
√

2

×
cos ωt − 2π ×

3 
ic = 0 

Problem 4: This one is best done graphically. Note that the current through the ground resistor is 
just the sum of the three phase currents. Shown in Figure 7 is the same figure that established 
the currents, but with this summation shown. 

b 

ω t 

i 

i 

ai 

c 

π 
3 

i 
g 

Figure 7: Currents 

Now, the voltages in the individual resistors will be just the current sources times the ten 
ohm resistance. The voltage across the ground resistance will, similarly, be just the bottom 
trace times fifty ohms. This is shown in Figure 8. 

Problem 5: For 6.690 

To start, note the wye connected resistors are equivalent to a delta connection as shown in 
Figure 9 
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�
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6

�
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�
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�

≈ −104j − 36
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π 

 
I − 5

√
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Ic = ca Ibc =
 24
√

3

�
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 24
√
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�
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�
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Figure 8: Voltages


2 
5 5 

1 1 
2.5 

Figure 9: Wye-Delta Equivalent 

Currents through the resistors of the delta are, noting that 120 = 24: 
5 

jIab = 24
√

3e
π 

6 

Ibc = 

Ica = 
π 

6 

−j48
√

3 
j 5

24
√

3e

Then currents from the three elements of the voltage source are:


24
√

3 e
j
π 

6

π 

6
j 5

e 3 × 24 = 72
Ia = Iab − Ica =
 − =

√

The phasor diagram is shown in Figure 10 
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Figure 10: Phasor Diagram 
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Appendix: MATLAB scripts: 

% Chapter 3, Problem 4

% transmission line problem


f = 60; % electrical frequency

Z0 = 250; % characteristic impedance

L = 300e3; % line length

vp = 3e8; % speed of light

k =2*pi*f/vp; % wavenumber at frequency

kl = k*L; % to be used enough

Vs = 500e3; % RMS voltage


% part a)

Vrz = Vs/cos(kl); % receiving end voltage, open

Isz = (Vs/Z0) * tan(kl); % sending end current


fprintf(’Chapter 3, Problem 4\n’)

fprintf(’Receiving end open:\n’)

fprintf(’Receiving end Voltage = %g V, RMS\n’, Vrz)

fprintf(’Sending end Current = %g A, RMS\n’, Isz)


Rl = [Z0/.8 Z0 Z0/1.2]; % gonna do this for these values


for	 k = 1:length(Rl);

R = Rl(k);

vr = (R/Z0) / ((R/Z0)*cos(kl) + j*sin(kl));

Vr = Vs * abs(vr);

I_s = abs((Vs/Z0)*(cos(kl)-j*(R/Z0)*sin(kl))/((R/Z0)*cos(kl)-j*sin(kl)));

fprintf(’R = %g Vr = %g Is = %g\n’, R, Vr, I_s)


end


P_sil = Vs^2/Z0 % surge impedance loading


P_r	 = P_sil/100:P_sil/100:P_sil;


R = Vs^2 ./ P_r;

V_l = Vs .* R ./ Z0 ./ ((R ./ Z0) .* cos(kl) + j * sin(kl));

Vl = abs(V_l);


P_rec = [0 P_r];

V_rec = [Vrz Vl];


figure(1)

plot(P_rec, V_rec)
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title(’Chapter 3, Problem 4, Voltage vs. Loading’)

ylabel(’V, RMS’)

xlabel(’Real Power, W’)

grid on


% now look at compensation


Qcm = 100e6; % maximum reactive compensation

Qc = -Qcm:Qcm/100:Qcm; % this range of compensation

Ycm = (j*2/Vs^2) .* Qc; % reactive admittance


figure(2)

clf

hold on


for	 k = 1:length(Rl)

Yr = 1/Rl(k) + Ycm;

vr = (1 ./(Z0 .* Yr)) ./ ((1 ./(Z0 .* Yr) .*cos(kl) + j*sin(kl)));

Vr = abs(vr) .* Vs;

plot(Qc, Vr)


end


hold off

title(’Chapter 3, Problem 4, Compensation’)

ylabel(’V, RMS’)

xlabel(’Compensation, VARs’)

grid on

% Chapter 3, Problem 4

% transmission line problem


f = 60; % electrical frequency

Z0 = 250; % characteristic impedance

L = 300e3; % line length

vp = 3e8; % speed of light

k =2*pi*f/vp; % wavenumber at frequency

kl = k*L; % to be used enough

Vs = 500e3; % RMS voltage


% part a)

Vrz = Vs/cos(kl); % receiving end voltage, open

Isz = (Vs/Z0) * tan(kl); % sending end current


fprintf(’Chapter 3, Problem 4\n’)

fprintf(’Receiving end open:\n’)

fprintf(’Receiving end Voltage = %g V, RMS\n’, Vrz)
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fprintf(’Sending end Current = %g A, RMS\n’, Isz)


Rl = [Z0/.8 Z0 Z0/1.2]; % gonna do this for these values


for	 k = 1:length(Rl);

R = Rl(k);

vr = (R/Z0) / ((R/Z0)*cos(kl) + j*sin(kl));

Vr = Vs * abs(vr);

I_s = (Vs/Z0)*(cos(kl)+j*(R/Z0)*sin(kl))/((R/Z0)*cos(kl)+j*sin(kl));

P_s = real(Vs*conj(I_s));

Q_s = imag(Vs*conj(I_s));

P_r = Vr^2/Rl(k);

fprintf(’R = %g Vr = %g Is = %g\n’, R, Vr, abs(I_s))

fprintf(’Pr = %g Ps = %g Qs = %g\n’, P_r, P_s, Q_s)


end


P_sil = Vs^2/Z0 % surge impedance loading


P_r	 = P_sil/100:P_sil/100:P_sil;


R = Vs^2 ./ P_r;

V_l = Vs .* R ./ Z0 ./ ((R ./ Z0) .* cos(kl) + j * sin(kl));

Vl = abs(V_l);


P_rec = [0 P_r];

V_rec = [Vrz Vl];


figure(1)

plot(P_rec, V_rec)

title(’Chapter 3, Problem 4, Voltage vs. Loading’)

ylabel(’V, RMS’)

xlabel(’Real Power, W’)

grid on


% now look at compensation


Qcm = 100e6; % maximum reactive compensation

Qc = -Qcm:Qcm/100:Qcm; % this range of compensation

Ycm = (j*2/Vs^2) .* Qc; % reactive admittance


figure(2)

clf

hold on


for	 k = 1:length(Rl)
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---------------

Yr = 1/Rl(k) + Ycm;

vr = (1 ./(Z0 .* Yr)) ./ ((1 ./(Z0 .* Yr) .*cos(kl) + j*sin(kl)));

Vr = abs(vr) .* Vs;

plot(Qc, Vr)


end


hold off

title(’Chapter 3, Problem 4, Compensation’)

ylabel(’V, RMS’)

xlabel(’Compensation, VARs’)

grid on


% Problem Set 4, Problem 2


global Vs R Xl Xc Yc P0


% parameters

Vs = 1e4; % voltage

R = 1; % line resistance

Xl = 10; % line reactance

Xc = 60; % compensating reactance

delt = 0:pi/1000:pi/2; % run over this range of angles

P0 = 7.5e6;


Yc = 1/(R-j*Xl); % conjugate of line admittance


Ss = Vs^2*(Yc-j/Xc) - Vs^2*Yc .* exp(j .* delt);

Sr = -Vs^2*(Yc-j/Xc) + Vs^2*Yc .* exp(-j .* delt);


% now find the angle for P0 at receiving end


delta = fzero(’fz’, .2);


Ssp = Vs^2*(Yc-j/Xc) - Vs^2*Yc * exp(j * delta);

Srp = -Vs^2*(Yc-j/Xc) + Vs^2*Yc * exp(-j * delta);


Psp = real(Ssp);

Prp = real(Srp);

Qsp = imag(Ssp);

Qrp = imag(Srp);


Ps = real(Ss);
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Qs = imag(Ss);

Pr = real(Sr);

Qr = imag(Sr);


Psz = real(Vs^2*(Yc-j/Xc));

Qsz = imag(Vs^2*(Yc-j/Xc));

Prz = -Psz;

Qrz = -Qsz;


figure(2)

plot(Ps, Qs, Pr, Qr, [Psz Psp], [Qsz Qsp], [Prz Prp], [Qrz Qrp])

title(’Problem Set 4, Problem 2’)

ylabel(’MVAR’)

ylabel(’MW’)

axis ([-5e6 15e6 -10e6 10e6])

legend(’Sending’, ’Receiving’)

axis square

grid on


fprintf(’For %4.1f kW at receiving end\n’, P0/1000)

fprintf(’Angle = %g radians = %g degrees\n’, delta, (180/pi)*delta)

fprintf(’Sending end Power = %g\n’, Psp)

fprintf(’Sending end Reactive = %g\n’, Qsp)

fprintf(’Receiving end Reactive = %g\n’, Qrp)
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