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Chapter 9, Problems 2, 3 and 4 The equivalent circuit for this machine is shown in Figure 1. 
The new element is a resistance that represents core loss: 

V 2 

Rc = ℓ−ℓ 

Pcore 

R
1

X
1 

X
2 

V R
c 

X
m 

R
2 

s 

Figure 1: Induction Motor Equivalent Circuit 

The script that is appended carries out the analysis. First, line-neutral voltage is: 

Vℓ−ℓ
V = √

3 

Then, straightforward circuit analysis yields: 

Zc = Rc jXm||
R2

Zr = + jX2 
s 

Zag = Zc||Zr 

Zt = Zag + R1 + jX1 

V 
I1 = 

Zt 

Zc
I2 = I1 

Zc + Zr 

p 
2 R2

Te = 3
ω 
|I2|

s 

To get a torque-speed curve this calculation must be done many times for a range of points 
in slip. It is my experience that a logarithmically spaced set of points in slip works better 
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Figure 2: Induction Motor Equivalent Circuit 

since it can yield a lot of points for small values of slip and fewer points for high slip where 
things are not very interesting. Generally we would want to plot things against speed: 

f 
RPM = 60 (1 − s) 

p 

Current vs. Speed and Torque vs. Speed are displayed in Figures 3 and 4 respectively. 

The lazy way of getting peak torque is to use MATLAB’s max() function. But if you want 
to use the formula in the book, we first construct the simplified equivalent circuit, shown in 
Figure 2 

The revised elements in this circuit are: 

Xm
V ′ = |V

R1 + j ∗ X1 + jXm 

R1 
′ + jX 1 

′ = R1 + j ∗ X1||jXm 

R1X1Xm
R ′ = 

1 
R

1

2 + (X1 + Xm)2 

′ 
XmR

1

2 + X1Xm (X1 + Xm)
X

1 = 
R2 + (X1 + Xm)2 

1 

Then peak torque is, from the un-numbered expression on page 296 of the book: 

Tmax =
3 p 

� 

|V ′ |2 

2 ω R
1 
′ + (R

1

′ )2 + (X
1 
′ + X2)

2 

Note that I have left off the impact of the core resistance in the expressions above, due to 
sloth. However, numerically I did calculate the equivalent circuit elemente with the core 
effect included. The results produced by the script are pretty close together, vindicating my 
laziness. 

Max Torque = 246.343

Classical Calc = 246.623

Classical with complete params = 246.345
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Figure 3: Induction Motor Current vs. Speed 
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Figure 4: Induction Motor Torque vs. Speed 

3




Script for Problem 1: 

% Problem Set 10, Problem 1


% parameters

Vll = 480;

p = 2;

f = 60;

r1 = .2;

r2 = .24;

x1 = 1;

x2 = 1.2;

xm = 50;

Pc = 400;

Pf = 75;


rc = Vll^2/Pc; % core resistance

V = Vll/sqrt(3); % line-neutral voltage

om = 2*pi*f;


Vp = V*xm/abs(r1+j*(xm+x1)); % for max torque calc

rp =(r1*x1*xm^2)/(r1^2+(x1+xm)^2);

xp =(xm*r1^2+x1*xm*(x1+xm))/(r1^2+(x1+xm)^2);


zc = j*xm*rc/(j*xm+rc); % core branch impedance


s = logspace(-3,0,500); % slip


zr = j*x2 + r2 ./ s; % rotor impedance

zag = zr .*zc ./(zr+zc); % air gap impedance


zt = r1+j*x1 + zag; % terminal impedance


It = V ./ zt; % terminal current

I2 = It .* zc ./(zc + zr); % secondary current


Te = 3*(p/om) * r2 .* abs(I2) .^2 ./ s; % torque


omm = (om/p) .* (1 - s); % mechanical speed

rpm = (30/pi) .* omm; % in RPM


Tp1 = max(Te); % first cut at max torque


figure(1)

plot(rpm, Te)
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title(’ Problem 1’)

ylabel(’N-m’)

xlabel(’RPM’)


% alternate to max torque 1:

Tp2 = (1.5*p/om) *abs(Vp)^2/(rp+sqrt(rp^2 + (xp+x2)^2));


fprintf(’Max Torque = %g\n’, Tp1)

fprintf(’Classical Calc = %g\n’, Tp2)


% third attempt at max torque

zs = (r1+j*x1)*zc/(r1+j*x1+zc);

rpa = real(zs);

xpa = imag(zs);

vpa =abs(V*zc/(r1+j*x1+zc));


Tp3 = (1.5*p/om) *abs(vpa)^2/(rpa+sqrt(rpa^2 + (xpa+x2)^2));

fprintf(’Classical with complete params = %g\n’, Tp3)


% plot of terminal current:

figure(2)

plot(rpm, abs(It))

title(’Problem 1’)

ylabel(’Amperes, RMS’)


Problem 2 This problem has several parts and starts out very much like Problem 1. In fact the 
machine is the same motor as in Problem 1, re-wound for a different terminal voltage. All of 
the calculations for this problem and the next one are carried out in the attached script. 

1.	 Torque vs. speed is plotted in Figure 5 

2.	 Current vs. speed is plotted in Figure 6. 

3.	 Breakdown torque is calculated using the max() function in Matlab: 

Part 3: Max Torque = 242.723


4. When running light, the motor is delivering only friction and windage, assumed to be, 
somewhat improbably, constant. To find that point we employ a two-step strategy. 

•	 First, find two adjacent points in slip for which the net shaft power (that is power 
minus friction and windage) are, respectively, negative and then positive. This 
means the actual operating point is somewhere between the two points. 

•	 Use linear interpolation (See Figure 7 to estimate the point in slip where the motor 
is delivering the right power. the better estimate for slip is: 

sz = s1 + (s2 − s1) 
−P1 

P2 − P1 
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Figure 5: Induction Motor Torque vs. Speed 
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Figure 6: Induction Motor Current vs. Speed 
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Figure 7: Linear Interpolation 

Note this is not a perfect estimate, but it appears to give a fairly close estimate of the 
correct value of slip.


Using that interpolated value of slip, motor operation is re-evaluated at the one point

and we find:


Part 4: Running Light: Speed = 1799.85 RPM

Real Power = 476.681 Reactive Power = 4697.06

Current = 4.54297 A


5. Locked rotor (or ’blocked rotor’) is easy since we know the speed. The equivalent circuit 
is evaluated and the magnitude of impedance dictates the voltage that needs to be used. 
The rest is straightforward. Note that this test actually produces relatively little torque: 

Part 5: Locked Rotor Test

Current = 22.4 A Voltage = 78.756 V

Real Power = 994.037 W Reactive Power = 5198.21 VAR

Torque = 2.99466 N-m


6. We actually have all we need for the calculation of efficiency and power factor: all 
that is required is to identify which values of slip correspond with the lower and upper 
bounds of power. Then we can calculate efficiency (Power out/power in) and power 
factor (power in/apparent power) over that range of slips and do a cross-plot. This is 
shown in Figure 8. 

7. This last part corresponds to volts-per-Hz control of the machine. With only a few 
curves to plot we can calculate them one by one and then plot them on a static plot 
window using ’hold’. There are a couple of things to recognize are important: 

•	 Voltage varies with speed, so it is important to schedule the right voltage 

•	 Reactances are functions of frequency, so we simply multiply the reactances X1, X2 

and Xm by the ratio of frequency to base frequency (60 Hz). 

The torque-speed curves are shown in Figure 9 

The script that was used to generate all of this stuff was also used for Problem 3 and 
will appear after that problem. 
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8




0 

0.5 

1 

1.5 

2 

2.5 

3 

W
at

ts
 

Power In 
Power Out 

x 10
4	 Problem 3 

0 500 1000	 1500 2000 2500 3000 
RPM 

Figure 10: Volts per Hz. Input and Output Power 

Problem 3: Volts/Hz Operation The procedure for this problem is very similar to what was 
used in the Problem 2 to find the ’running light’ point and, of course, the last part of that 
problem. It is all in the script. For each of several points in frequency a torque vs. speed 
curve is run, then the actual point in slip is identified by: 

•	 finding two points that straddle the required torque, 

•	 linear interpolation is used to find the slip appropriate for that speed, 

•	 The model is run again for the single point, and real and reactive power in and power 
out are identified 

And then efficiency and power factor are calculated. The results are shown in Figures 10 
and 11. 
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Script for Problems 2 and 3: 

% Problem Set 10, Problems 2 and 3


% parameters

Vll = 600;

p = 2;

f = 60;

r1 = .3;

r2 = .375;

x1 = 1.6;

x2 = 1.9;

xm = 75;

Pc = 400;

Pf = 75;

Pmin = 933;

Pmax = 18650;


rc = Vll^2/Pc;

V = Vll/sqrt(3);

om = 2*pi*f;

zc = j*xm*rc/(j*xm+rc);

s = logspace(-4,0,500);

zr = j*x2 + r2 ./ s;

zag = zr .*zc ./(zr+zc);

zt = r1+j*x1 + zag;

It = V ./ zt;

I2 = It .* zc ./(zc + zr);


% core resistance

% line-neutral voltage

% frequency in radians/second

% core branch impedance

% slip range

% rotor impedance

% air gap impedance

% terminal impedance

% terminal current

% secondary current


Te = 3*(p/om) * r2 .* abs(I2) .^2 ./ s; % torque

Pm = (om/p) .* Te .* (1-s) - Pf; 
Pin = real(3 .* V .* conj(It)); 
Qin = imag(3 .* V .* conj(It)); 
omm = (om/p) .* (1 - s); 
rpm = (30/pi) .* omm;

Tp1 = max(Te);


figure(1)

plot(rpm, Te)

title(’ Problem 2’)

ylabel(’N-m’)

xlabel(’RPM’)

grid on


% plot of terminal current:

figure(2)


% shaft power produced

% input power

% input reactive power

% mechanical speed

% in RPM


11




plot(rpm, abs(It))

title(’Problem 2’)

ylabel(’Amperes, RMS’)

xlabel(’RPM’)

grid on


fprintf(’Part 3: Max Torque = %g\n’, Tp1)


figure(3)

plot(rpm, Pm)

title(’Problem 2’)

ylabel(’Output Power, Watts’)

xlabel(’RPM’)

grid on


% running light: it makes only friction and windage, Pf

% search over s to find light operating point

for k = 1:length(s)-1


if Pm(k) < 0 & Pm(k+1) >0,

kz = k;

break;


end

end

% now do linear interpolation

sz = s(kz) - (s(kz+1)-s(kz)) * Pm(kz)/(Pm(kz+1)-Pm(kz));

zrl = j*x2 + r2 / sz; % rotor impedance

zagl = zrl *zc /(zrl+zc); % air gap impedance

ztl = r1+j*x1 + zagl; % terminal impedance


Itl = V / ztl; % terminal current

I2l = Itl * zc /(zc + zrl); % secondary current


Pem = 3 * (r2/sz) * abs(I2l) .^2 - Pf; % net shaft power


Pl = real(3*V*conj(Itl));

Ql = imag(3*V*conj(Itl));

Nl = (60*f/p)*(1-sz);


fprintf(’Part 4: Running Light: Speed = %g RPM\n’, Nl)

fprintf(’Real Power = %g Reactive Power = %g\n’, Pl, Ql)

fprintf(’Current = %g A\n’, abs(Itl))


% blocked rotor test
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Ilrm = 22.4; % test current magnitude

zrl = j*x2+r2;

zagl = zrl * zc / (zrl + zc);

ztl = r1 + j*x1 + zagl;

Vlr = abs(Ilrm * ztl);

Ilr = Vlr / ztl; % actual test current

I2lr = Ilr * zc/(zc+zrl); % rotor current

Plr = real(3*Vlr*conj(Ilr));

Qlr = imag(3*Vlr*conj(Ilr));

Tlr = 3*(p/om)*r2*abs(Ilr)^2;


fprintf(’Part 5: Locked Rotor Test\n’)

fprintf(’Current = %g A Voltage = %g V\n’, abs(Ilr), Vlr)

fprintf(’Real Power = %g W Reactive Power = %g VAR\n’, Plr, Qlr)

fprintf(’Torque = %g N-m\n’, Tlr)


% part 6: over some range of operation

% minimum

for k = 1:length(s)-1


if Pm(k) < Pmin & Pm(k+1) >Pmin,

kmin = k;

break;


end

end

for k = 1:length(s)-1


if Pm(k) < Pmax & Pm(k+1) >Pmax,

kmax = k;

break;


end

end


P_out = Pm(kmin:kmax);

P_in = Pin(kmin:kmax);

Q_in = Qin(kmin:kmax);

VA_in = sqrt(P_in .^2 + Q_in .^2);

Eff = P_out ./ P_in;

PFACT = P_in ./ VA_in;


figure(4)

subplot 211

plot(P_out, Eff)

title(’Problem 2, Part 6’)

ylabel(’Efficiency’)

grid on

subplot 212
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plot(P_out, PFACT)

ylabel(’Power Factor’)

xlabel(’Output Power’)

grid on


% part 7: Adjustable voltage

F = [20 40 60 80 100];

vr = [2/6 4/6 1 1 1];

f0 = 60;


figure(5)

clf

hold on

for k = 1:length(F)


f = F(k);

om = 2*pi*f; % frequency in radians/second

zc = j*(f/f0)*xm*rc/(j*(f/f0)*xm+rc); % core branch impedance

s = logspace(-4,0,500); % slip range


zr = j*(f/f0)*x2 + r2 ./ s; % rotor impedance

zag = zr .*zc ./(zr+zc); % air gap impedance

zt = r1+j*(f/f0)*x1 + zag; % terminal impedance

It = vr(k)*V ./ zt; % terminal current


I2 = It .* zc ./(zc + zr); % secondary current

Te = 3*(p/om) * r2 .* abs(I2) .^2 ./ s;% torque

N = (60*f/p) .* (1-s);


plot(N, Te)

end

hold off

title(’Problem 2, Part 7’)

ylabel(’N-m’)

xlabel(’RPM’)

grid on


% Problem 3: continuation of adjustable voltage

T_l = 100; % constant load characteristic

F = 15:5:150; % this frequency range

V_ph = zeros(size(F));

P_in = zeros(size(F)); % scratch space

P_out = zeros(size(F));

PFact = zeros(size(F));

Efficiency = zeros(size(F));

Nr = zeros(size(F));

for k = 1:length(F) % set volts/Hz


if f<60
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V_ph(k) = V*F(k)/60;

else


V_ph(k) = V;

end


end


% now do the calculation: should be familiar by now


for	 k = 1:length(F)

f = F(k);

Vt = V_ph(k);

om = 2*pi*f; % frequency in radians/second

zc = j*(f/f0)*xm*rc/(j*(f/f0)*xm+rc); % core branch impedance

s = logspace(-4,0,500); % slip range


zr = j*(f/f0)*x2 + r2 ./ s; % rotor impedance

zag = zr .*zc ./(zr+zc); % air gap impedance

zt = r1+j*(f/f0)*x1 + zag; % terminal impedance

It = Vt ./ zt; % terminal current


I2 = It .* zc ./(zc + zr); % secondary current

T_em = 3 * (p/om) .*r2 .* abs(I2) .^2 ./ s; % shaft torque


% now we find the slip for the load torque

if max(T_em) < T_l % all done


kmax = k-1;

break;


else

for kk = 1:length(s)-1


if T_em(kk) < T_l && T_em(kk+1) > T_l,

kr = kk;

break;


end

end

% improve our guess by linear interpolation

sr = s(kr) + (s(kr+1)-s(kr)) * (T_l - T_em(kr))/(T_em(kr+1)-T_em(kr));

% now do the calculation at this point


zrr = j*(f/f0)*x2 + r2 / sr; % rotor impedance

zagr = zrr *zc /(zrr+zc); % air gap impedance

ztr = r1+j*(f/f0)*x1 + zagr; % terminal impedance

Itr = Vt / ztr; % terminal current

I2r = Itr * zc /(zc + zrr); % secondary current

P_out(k) = 3 * (r2/sr) * abs(I2r) .^2;% - Pf*(f/f0)^3; % net shaft power

P_in(k) = real(3*Vt*conj(Itr)); % real power in

Q_in(k) = imag(3*Vt*conj(Itr)); % real power out

Nr(k) = (60*f/p)*(1-sr); % rotational speed

VA = sqrt(P_in(k)^2 + Q_in(k)^2);
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Figure 12: Doubly Fed Induction Machine Equivalent Circuit 

Efficiency(k) = P_out(k)/P_in(k);

PFact(k) = P_in(k)/VA;


end

end


% now need to clip all of these to match actual capacity

Nrp = Nr(1:kmax);

P_inp = P_in(1:kmax);

P_outp = P_out(1:kmax);

PFactp = PFact(1:kmax);

Effp = Efficiency(1:kmax);


figure(6)

plot(Nrp, P_inp, Nrp, P_outp);

title(’Problem 3’)

ylabel(’Watts’)

xlabel(’RPM’)

legend(’Power In’, ’Power Out’)

grid on


figure(7)

plot(Nrp, Effp, Nrp, PFactp)

title(’Problem 3’)

ylabel(’per-unit’)

xlabel(’RPM’)

legend(’Efficiency’, ’Power Factor’)

grid on


Problem 4: DFM as Wind Generator If we take the liberty of ignoring resistances, the DFM 
can be represented as shown in 12 

Noting the sign convention here, we know that power input to the rotor is related to power 
output from the stator by: 

PR = sPS 

Then, since mechanical power into the machine must be equal to the difference beween these: 
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PM = PS − PR 

We can find power out of the stator of the machine 

PM
PS = 

s1 −
If, as stated in the problem description, the system side of the bidirectional converter is 
interacting with the power system at unity power factor, meaning zero reactive power, all 
reactive power to the system must be supplied by the stator, so that, using pf as power 
factor: 

� � 

1 
QS = PM 

pf2 − 1 

Real and reactive power are: 
PS + jQS = 3V I ∗ 

which means that terminal current (in this case out of the stator is: 

PS = jQS
IS = 

3V 

Keeping within the system frequency part of the equivalent circuit, we can find voltage across 
the magnetizing branch: 

Vm = V + jX1IS 

The resulting current through the magnetizing branch is: 

Vm
Im = 

jXm 

and since I2 = IS + Im, 
V2 = Vm + jX2I2 

Real and reactive power into the rotor, apparent from the stator frame, are: 

P2 + jQ2 = 2V2I2 
∗ 

And then real and reactive power at the terminals of the rotor (slip rings) are: 

PR = sP2


QR = s Q2
| |

Alternatively, rotor voltage and current can be seen to be modified by the stator to rotor 
transformer ratio and, in the case of voltage, slip: 

NR
VR = sV2

NS 

NS
IR = I2

NR 
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Figure 13: Real and Reactive Power into Slip Rings of DFM 

There is one subtlety here: for negative values of slip, where rotor power is negative (that 
is real power is coming out of the rotor), the phase sequence on the rotor reverses, so that 
the reactive component of current changes sign (with respect to positive slip). This gives an 
extra sign change to reactive power, which is why it is multiplied by s .| |
The calculations described here are carried out in the attached script and result in: 

Problem 4

+30 percent slip

Rotor Real Power = 1.02857e+06 W Reactive = 1.54624e+08 VARs

-30 percent slip

Rotor Real Power = -553846 W Reactive = 6.26373e+07 VARs


Problem 5: More DFM as Wind Turbine There is relatively little new in this, beyond what 
was done in Problem 4, aside from finding rotor speed, which is: 

60f 
Nm = (1 − s) 

p 

The calculations described above are carried out for a collection of points in slip and then 
cross-plotted against speed in RPM, and the results are shown in Figure 13 

Matlab Code for Problems 4 and 5 
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% Problem Set 10, Problems 4 and 5

% data


f = 60;

p = 2;

om = 2*pi*f;

Pm = 2.4e6;

pf = 0.8;

Vs = 690/sqrt(3);

N = 3;


% system frequency

% pole pairs

% radians per second

% turbine power

% power factor

% stator voltage


X1 = om*(.0035+.00175); % machine reactances

X2 = om*(.0315+.01575)/N^2; % referred to the stator

Xm = om*.0104/N;


s = .3:(-.01):-.3; % this is the range of speeds

Ps = Pm ./ (1-s); % stator OUTPUT power

Q0 = Pm *(1/pf^2 - 1); % reactive power


Qs = Q0 .* ones(size(Ps)); % so they match


Is = (Ps - j .* Qs) ./ (3*Vs); % terminal current


Vm = Vs + j*X1 .* Is; % magnetizing branch voltage

Im = Vm ./(j*Xm);

I2 = Is + Im; % rotor side current

V2 = Vm + j*X2 .* I2; % rotor voltage


P2 = 3 .* real(V2 .* conj(I2));

Q2 = 3 .* imag(V2 .* conj(I2));


Pr = s .* P2;

Qr = abs(s) .* Q2;


% alternate calc


Ir = I2 ./ N;

Vr = V2 .* N .* s;


Pra = 3 .* real(Vr .* conj(Ir));

Qra = 3 .* imag(Vr .* conj(Ir));


% Problem 4


Pr1 = Pr(1);
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Pr2 = Pr(length(Pr)); 

Qr1 
Qr2 

= 
= 

Qr(1); 
Qr(length(Pr)); 

% check 
Pr1a = Pra(1); 
Pr2a = Pra(length(Pr)); 

Qr1a 
Qr2a 

= 
= 
Qra(1); 
Qra(length(Pr)); 

fprintf(’Problem 4\n’) 
fprintf(’+30 percent slip\n’) 
fprintf(’Rotor Real Power = %g W 
fprintf(’-30 percent slip\n’) 
fprintf(’Rotor Real Power = %g W 
fprintf(’Check:\n’) 
fprintf(’+30 percent slip\n’) 
fprintf(’Rotor Real Power = %g W 
fprintf(’-30 percent slip\n’) 
fprintf(’Rotor Real Power = %g W 

Reactive 

Reactive 

Reactive 

Reactive 

= 

= 

= 

= 

%g VARs\n’, Pr1, Qr1) 

%g VARs\n’, Pr2, Qr2) 

%g VARs\n’, Pr1a, Qr1a) 

%g VARs\n’, Pr2a, Qr2a) 

% Problem 5 
RPM = (60*f/p) .* (1-s); 

figure(1) 
subplot 211 
plot(RPM, Pr) 
title(’Problem 5’) 
ylabel(’Rotor Power, Watts’) 
grid on 
subplot 212 
plot(RPM, Qr) 
ylabel(’VARs’) 
xlabel(’RPM’) 
grid on 
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