Massachusetts Institute of Technology
 Department of Electrical Engineering and Computer Science

6.061/6.690 Introduction to Power Systems

Problem Set 11 Solutions
April 25, 2011

Problem 1: Chapter 12, Problem 12 From the text, we have expressions for voltage: at the 'rectifier' end:

$$
V_{D C}=\frac{3}{\pi} V_{p} \cos \alpha-\frac{3}{\pi} X I_{D C}
$$

where V_{p} is the peak of line-line voltage: $V_{p}=\sqrt{6} V_{\ell \ell}$, if $V_{\ell \ell}$ is line-line, RMS voltage. Voltage drop across the 'fictitious' resistance is:

$$
V_{x}=\frac{3}{\pi} X I_{D C}=\frac{3}{\pi} \times 1.5 \times 5,000 \approx 7162 \mathrm{~V}
$$

This can be used to calculate the firing angle α and the overlap angle u. At the rectifier end:

$$
\begin{aligned}
\cos \alpha & =\frac{V_{D C}+V_{x}}{\frac{3}{\pi} V_{p}} \\
\cos (\alpha+u) & =\cos \alpha-\frac{2 X I_{D C}}{V_{p}}
\end{aligned}
$$

This and the rest of the calculations are carried out by the script that is attached. Sending end numbers are:

```
Sending (Rectifier) end
Firing Angle = 23.9891 deg
Firing Angle Plus Overlap Angle = 28.1784 deg
Overlap Angle = 4.18929 deg
```

At the 'inverter' end of the line:

$$
\begin{aligned}
& \cos (\pi-\alpha)=\frac{V_{D C}-V_{X}}{\frac{3}{\pi} V_{p}} \\
& \cos (\alpha+u)=\cos \alpha-\frac{2 X I_{D C}}{V_{p}}
\end{aligned}
$$

Receiving (inverter) end
Firing Angle $=151.822 \mathrm{deg}$
Firing Angle Plus Overlap Angle $=156.011 \mathrm{deg}$
Overlap Angle $=4.18929$ deg

To do the Fourier analysis, note that the AC side has alternating pulses of current with amplitude of $5,000 \mathrm{~A}$ and width of $\theta=120^{\circ}$. The Fourier series amplitude for harmonic of order n is:

$$
I_{n}=I_{D C} \frac{4}{n \pi} \sin n \frac{\theta}{2} \sin n \frac{\pi}{2}
$$

These evaluate to:

Time Harmonic Amplitudes for Six Pulse System		
Harmonic Order	1	Current Amplitude $=5513.3$
Harmonic Order	5	Current Amplitude $=$
Harmonic Order	7	Current Amplitude $=$
Harmonic Order	11	-787.6
Current Amplitude $=$	501.2	
Harmonic Order	13	Current Amplitude $=$
Harmonic Order	17	Current Amplitude $=$
Harmonic Order	19	Current Amplitude $=$
Harmonic Order	23	Current Amplitude $=$
Harm	239.7	
Harmonic Order	25	Current Amplitude $=$

Note the problem asks for only the first four of these, but I kept a few more to be consistent with the next part. A reconstructed time waveform is shown in Figure 1.

Figure 1: Reconstruction of Six Pulse Waveform, harmonics to order 25
For a twelve pulse system the amplitude of the harmonics of order $5,7,17$ and 19 all cancel. The harmonics of the other orders remain the same. This needs a little explanation: we have not considered the use of transformers here, but to have the same AC and DC voltage levels, we would need transformers of $1 / 2$ the ratio, so each of the two transformers would contribute

AC harmonics of $1 / 2$ the amplitude as in the six pulse case, but these harmonics would add, restoring the amplitude to the same level. These would then be:

```
Harmonic Amplitudes for Twelve Pulse System
Harmonic Order 1 Current Amplitude = 5513.3
Harmonic Order 11 Current Amplitude = 501.2
Harmonic Order 13 Current Amplitude = 424.1
Harmonic Order 23 Current Amplitude = 239.7
Harmonic Order 25 Current Amplitude = 220.5
```

The reconstructed AC waveform is shown in Figure 2. It does look a little bit more sine wave like.

Figure 2: Reconstructed AC Waveform: Twelve Pulse

Script for Problem 12-12

```
% Problem 12-12
% basic parameters
X = 1.5; % leakage at each end
Vl = 330e3; % line-line voltage (AC)
Vdc = 400e3; % DC voltage
I = 5e3; % DC current
% first, get that mysterious overlap voltage
Vx = (3/pi)*X*I;
Vp = sqrt(2)*Vl; % and this is the peak system voltage
alfs = acos((Vdc+Vx)/(3*Vp/pi));
upa = acos(cos(alfs)-2*X*I/Vp);
u = upa - alfs;
fprintf('Problem 12-12: Basic Analysis\n')
fprintf('Vx = %g\n', Vx)
fprintf('Sending (Rectifier) end\n')
fprintf('Firing Angle = %g deg\n', (180/pi)*alfs)
fprintf('Firing Angle Plus Overlap Angle = %g deg\n', (180/pi)*upa)
fprintf('Overlap Angle = %g deg\n', (180/pi)*u)
% other end
ppa = acos((Vdc- Vx)/((3/pi)*Vp));
alfr = pi - ppa;
apu = acos(cos(alfr) - 2*X*I/Vp);
ur = apu - alfr;
fprintf('Receiving (inverter) end\n')
fprintf('Firing Angle = %g deg\n', (180/pi)*alfr)
fprintf('Firing Angle Plus Overlap Angle = %g deg\n', (180/pi)*apu)
fprintf('Overlap Angle = %g deg\n', (180/pi)*ur)
% now do some Fourier Analysis
th = pi*2/3; % this is the angle of each pulse
N = [1 5 7 7 11 13 17 19 23 25];
```

```
In = I * (4/pi) .* sin(N .* th/2) .* sin(N .* pi/2) ./ N;
fprintf('Time Harmonic Amplitudes for Six Pulse System\n')
for k = 1:length(N)
    fprintf('Harmonic Order %4.0f Current Amplitude = %6.1f\n',N(k), In(k))
end
% now let's construct a figure of this
omt = 0:.001:4*pi;
Iac = zeros(size(omt));
for k = 1:length(N)
    Iac = Iac + In(k) .* sin (N(k) .* omt);
end
figure(1)
plot(omt, Iac)
title('Six Pulse AC Side')
ylabel('Amps')
xlabel('omega *t')
% now consider the 12-pulse situation
N = [11 11 13 23 25];
In = I * (4/pi) .* sin(N .* th/2) .* sin(N .* pi/2) ./ N;
fprintf('Harmonic Amplitudes for Twelve Pulse System\n')
for k = 1:length(N)
    fprintf('Harmonic Order %4.0f Current Amplitude = %6.1f\n',N(k), In(k))
end
% now let's construct a figure of this
Iac = zeros(size(omt));
for k = 1:length(N)
    Iac = Iac + In(k) .* sin (N(k) .* omt);
end
figure(2)
plot(omt, Iac)
title('Twelve Pulse AC Side')
ylabel('Amps')
```

xlabel('omega *t')

Problem 2, part a: 14-2 With terminal voltage of 100 volts and 10 amperes flowing through $\frac{1}{2} \Omega$ internal voltage is:

$$
G \Omega I_{f}=95 \mathrm{~V}
$$

which means that

$$
G=\frac{95}{180 \times 1} \approx 0.528 \mathrm{H}
$$

And peak torque is

$$
T=10 \times 0.528 \approx 5.28 \mathrm{~N}-\mathrm{m}
$$

Problem 2, Part b: 14-5 This is not as nasty a problem as it sounds. Note that we can easily calculate the motor constant: since $G \Omega I+R I=V$,

$$
G=\frac{V-R I}{\Omega I}
$$

And, since power is $P=G \Omega I^{2}$, we can find I for a given value of real power if we also know speed (which we do):

$$
I^{2}=\frac{P}{G \Omega}
$$

So then to find speed vs. voltage, we do a cross plot: for the range of speed, we find power:

$$
P=P_{0}\left(\frac{\Omega}{\Omega_{0}}\right)^{3}
$$

then calculate current according to the expression above, and then

$$
V=(G \Omega+R) I
$$

The result is plotted in Figure 3. Note a mistake in captioning (the figure identifies the wrong problem).

Figure 3: Speed vs. Voltage for Series Motor

Script for Problem 12-5
\% Problem 12.5
$\mathrm{Nz}=1000$;
omz $=(\mathrm{pi} / 30) * \mathrm{Nz}$;
$\mathrm{Vz}=600$;
$\mathrm{Iz}=800$;
$\mathrm{Pz}=400 \mathrm{e} 3$;
R = 1/8;
$\mathrm{G}=(\mathrm{Vz}-\mathrm{R} * \mathrm{Iz}) /(\mathrm{Iz} * \circ \mathrm{mz}) ;$
om = omz .* (0:.001:1);
P = Pz .* (om ./ omz) .^3;
I $=\operatorname{sqrt}(\mathrm{P} . /(\mathrm{G} . *$ om));
$\mathrm{V}=(\mathrm{G} . *$ om + R) .* I;
$\mathrm{N}=(30 / \mathrm{pi}) . *$ om;
figure(1)
plot(V, N);
title('Problem 12.5')
ylabel('RPM')
xlabel('Terminal Voltage')
grid on

Problem 3: 14-7 This is a piecewise linear situation that can be solved in each of three regions with the solutions patched together. In each region we have internal voltage:

$$
\begin{array}{lll}
E_{a}= & \frac{N}{N_{0}} R_{0} I_{F} & 0<I_{F}<1 \\
E_{a}=\frac{N}{N_{0}}\left(E_{1}+R_{1}\left(I_{F}-1\right)\right) & 1<I_{F}<2 \\
E_{a}=\frac{N}{N_{0}}\left(E_{2}+R_{2}\left(I_{F}-1\right)\right) & 2<I_{F}
\end{array}
$$

We can get minimum self-excitation speed by matching internal voltage with required voltage to make field current:

$$
N=N_{0} R_{a}+R_{F} R_{0} \approx 450 \mathrm{RPM}
$$

We could also write the second and third expressions as:

$$
\begin{aligned}
E_{a} & =\frac{N}{N_{0}}\left(V_{1}+R_{1} I_{F}\right) \\
E_{a} & =\frac{N}{N_{0}}\left(V_{2}+R_{2} I_{F}\right)
\end{aligned}
$$

Where, from the figure we have extracted the following data:

$$
\begin{aligned}
R_{0} & =200 \Omega \\
R_{1} & =50 \Omega \\
R_{2} & =\frac{50}{3} \Omega \\
E_{1} & =200 \mathrm{~V} \\
E_{2} & =250 \mathrm{~V} \\
V_{2} & =150 \mathrm{~V} \\
V_{2} & =\frac{650}{3} \mathrm{~V}
\end{aligned}
$$

Note the equivalent circuit for the machine is shown in Figure 4.

Figure 4: Equivalent Circuit
So that terminal voltage and field current are:

$$
\begin{aligned}
V & =E_{a} \frac{R_{F}}{R_{F}+R_{a}}-I_{L} \frac{R_{F} R_{a}}{R_{F}+R_{a}} \\
I_{f} & =\frac{V}{R_{F}}
\end{aligned}
$$

Figure 5: Voltage vs. Load Current

Now, we know the ranges of field current (1 A to 2 A and 2 A to the maximum, which is when:

$$
I_{F \max }=\frac{N}{N_{0}} \frac{V_{2}}{R_{a}+R_{F}-\frac{N}{N_{0}} R_{2}}=5 \mathrm{~A}
$$

I is straightforward to get I_{L} in terms of I_{F} :

$$
\begin{array}{ll}
I_{L}=\frac{N}{N_{0}} V_{1} R_{a}-I_{F} \frac{R_{a}+R_{F}-\frac{N}{N_{0}} R_{1}}{R_{a}} & 1<I_{F}<2 \\
I_{L}=\frac{N}{N_{0}} V_{2} R_{a}-I_{F} \frac{R_{a}+R_{F}-\frac{N}{N_{0}} R_{2}}{R_{a}} & 2<I_{F}<I_{F \max }
\end{array}
$$

Then, for each of the two segments, first internal and then terminal voltage can be found:

$$
\begin{aligned}
E_{a 1} & =\frac{N}{N_{0}}\left(V_{1}+R_{1} I_{F 1}\right) \\
E_{a 2} & =\frac{N}{N_{0}}\left(V_{2}+R_{2} I_{F 2}\right)
\end{aligned}
$$

The plot of voltage with load current is shown in Figure 5.
To'flat compound', note that, with the addition of a series field:

$$
\begin{aligned}
V & =\frac{R_{F}}{R_{F}+R_{a}} E_{a}-\frac{R_{a} R_{F}}{R_{a}+R_{F}} I_{L} \\
E_{a} & =\frac{N}{N_{0}}\left(V_{2}+R_{2} I_{F}\right)+\frac{N}{N_{0}} R_{S} I_{L}
\end{aligned}
$$

where R_{S} would be the characteristic of the series field. This suggests that terminal voltage V can be written out as:

$$
V=\frac{R_{F}}{R_{F}+R_{a}}\left(\frac{N}{N_{0}}\left(V_{2}+R_{2} I_{F}\right)+\frac{N}{N_{0}} R_{s} I_{L}\right)-\frac{R_{a} R_{F}}{R_{a}+R_{F}} I_{L}
$$

If the machine is indeed flat compounded so that V is constant, variations in I_{F} will not be of interest, so that what we need is for:

$$
\frac{R_{F}}{R_{F}+R_{a}} \frac{N}{N_{0}} R_{s}=\frac{R_{a} R_{F}}{R_{a}+R_{F}}
$$

We can accomplish this for only one speed, for which

$$
R_{s}=\frac{N_{0}}{N} R_{a}
$$

Now, the effective constant of a field winding is proportional to the number of turns, so if $N_{t s}$ is the number of turns of the series field and $N_{t f}$ is the number of turns of the shunt field, so that:

$$
R_{S}=\frac{N_{t s}}{N_{t f}} R_{2}
$$

Then required number of turns of the series field will be:

$$
N_{t s}=N_{t f} \frac{R_{S}}{R_{2}}=N_{t f} \frac{N_{0}}{N} \frac{R_{a}}{R_{2}}=\frac{500}{1.25} \frac{2}{\frac{50}{3}}=48 \text { turns }
$$

Script for Problem 14-7
\% Problem 14-7

```
Ra = 2;
Rf = 73;
E1 = 200;
E2 = 250;
RO = 200;
R1 = 50;
R2 = 50/3;
V1 = E1 - R1;
V2 = E2 - 2*R2;
NO = 1200;
N =1500;
% first break point is in speed
Ne = NO*(Ra+Rf)/RO;
fprintf('Excitation Speed = %g RPM\n', Ne)
I_f1 = 1:.01:2;
I_fmax = (N/NO)*V2 / (Ra+Rf-(N/NO)*R2);
V_oc = (N/NO)*(V2 + R2 * I_fmax);
fprintf('Open Circuit Voltage at %g RPM = %g\n', N, V_oc)
```

I_f2 = 2:.01:I_fmax;
$I_{_} \mathrm{L} 1=(\mathrm{N} / \mathrm{NO}) *(\mathrm{~V} 1 / \mathrm{Ra})-\mathrm{I}_{-} \mathrm{f} 1 .{ }^{*}(\mathrm{Ra}+\mathrm{Rf}-(\mathrm{N} / \mathrm{NO}) * \mathrm{R} 1) / \mathrm{Ra}$;
$I_{-} L 2=(N / N O) *(V 2 / R a)-I_{-} 2 . *(R a+R f-(N / N O) * R 2) / R a ;$
figure(1)
plot(I_f1, I_L1, I_f2, I_L2)
Ea1 $=(\mathrm{N} / \mathrm{NO}) . *\left(\mathrm{~V} 1+\mathrm{R} 1 . * \mathrm{I}_{-} \mathrm{f} 1\right) ;$
$\mathrm{Ea} 2=(\mathrm{N} / \mathrm{NO}) . *\left(\mathrm{~V} 2+\mathrm{R} 2 . * I_{-} \mathrm{f} 2\right) ;$
Vt1 = Ea1 .* Rf/(Ra+Rf) - (Ra*Rf/(Ra+Rf)) .* I_L1;
$\mathrm{Vt} 2=\mathrm{Ea2} . * \mathrm{Rf} /(\mathrm{Ra}+\mathrm{Rf})-(\mathrm{Ra} * \mathrm{Rf} /(\mathrm{Ra}+\mathrm{Rf})) . * \mathrm{I}_{\mathrm{L}} \mathrm{L} 2 ;$
figure(2)
plot(I_L1, Vt1, I_L2, Vt2)

Problem 4: Chapter 15, Problem 12 Peak torque is achieved when terminal current is exactly in quadrature with internal flux, in which case:

$$
T=\frac{3}{2} p \lambda_{0} I_{0}=\frac{3}{2} \times 2 \times 0.4 \times 4=4.8 \mathrm{~N}-\mathrm{m}
$$

With that torque, and noting that $4000 \mathrm{RPM}=418.9$ Radians/second,

$$
P=\omega T=418.9 \times 4.8 \approx 2011 \text { Watts }
$$

and with that condition, reactive voltage is in quadrature to internal voltage and terminal voltage is:

$$
\begin{aligned}
E_{\mathrm{int}} & =2 \times 418.9 \times .4 \approx 335.1 \mathrm{~V}(\text { peak }) \\
V_{x}=2 \times 418.9 \times .05 \times 4 \approx 167.6 \mathrm{~V}(\mathrm{peak}) & \\
V_{p h}^{2} & =E_{\mathrm{int}}^{2}+V_{x}^{2} \\
V_{\ell \ell} & =\sqrt{3} \times V_{p h} \approx 459 \mathrm{~V}(\text { peak })
\end{aligned}
$$

The machine can produce no torque when all terminal voltage is used to drive negative current in the d- axis to keep total current within rated:

$$
\frac{V}{\omega}=L_{0}\left(i_{s c}-i_{\max }\right)
$$

Short circuit current is:

$$
i_{s c}=\frac{\lambda_{0}}{L_{0}}=\frac{0.4}{.05} \approx 8 \mathrm{~A}
$$

so

$$
\frac{V}{\omega}=.05 \times(8-4)=.2
$$

or

$$
\omega=\frac{V}{0.2} \approx 1,873.5
$$

Or,

$$
\omega_{m}=\frac{\omega}{p} \approx 936.75 \mathrm{radians} / \text { second } \approx 8945 \mathrm{RPM}
$$

Problem 5: PWM The whole story is told by the script (which was the point of this problem: to write the script). the developed waveform is shown in Figure 6.

Figure 6: PWM Waveform
The fourier analysis of this is, for an amplitude of the fundamental of one (same as the triangle wave) is:

```
Fourier Analysis: fundemantal amplitude is 1
Harmonic 1 Amplitude = 0.999913
Harmonic 3 Amplitude = 0.000567261
Harmonic 5 Amplitude = 0.000557752
Harmonic 7 Amplitude = 0.000237784
Harmonic 9 Amplitude = 0.000238947
Harmonic 11 Amplitude = 9.1488e-05
Harmonic 13 Amplitude = -0.000103999
Harmonic 15 Amplitude = -0.000511369
Harmonic 17 Amplitude = -0.000412687
Harmonic 19 Amplitude = -0.000199636
Harmonic 21 Amplitude = -0.000310145
Harmonic 23 Amplitude = -0.000395562
Harmonic 25 Amplitude = -0.000803646
Harmonic 27 Amplitude = -0.000726942
Harmonic 29 Amplitude = -0.0013009
Harmonic 31 Amplitude = -0.00202079
Harmonic 33 Amplitude = -0.00553536
Harmonic 35 Amplitude = -0.0346489
```

For reduced amplitude, the harmonic content is:

Fourier Analysis: fundemantal amplitude is 0.25
Harmonic 1 Amplitude $=0.252131$
Harmonic 3 Amplitude $=0.00103508$
Harmonic 5 Amplitude $=0.00061986$
Harmonic 7 Amplitude $=0.00038121$
Harmonic 9 Amplitude $=0.000156627$
Harmonic 11 Amplitude $=0.000260912$
Harmonic 13 Amplitude $=3.41741 \mathrm{e}-06$
Harmonic 15 Amplitude $=7.81786 \mathrm{e}-05$
Harmonic 17 Amplitude $=-0.000184951$
Harmonic 19 Amplitude $=0.000229312$
Harmonic 21 Amplitude $=-0.000290529$
Harmonic 23 Amplitude $=0.000140973$
Harmonic 25 Amplitude $=-0.000277316$
Harmonic 27 Amplitude $=-0.000161898$
Harmonic 29 Amplitude $=-0.00070203$
Harmonic 31 Amplitude $=-0.000270523$
Harmonic 33 Amplitude $=-0.00114894$
Harmonic 35 Amplitude $=-0.00167895$

Script for Problem 5

```
f = 60; % basic electrical frequency
fp = 2400; % PWM frequency
T = 1/30; % do it for two cycles
d = 1e-6; % 1 microsecond increments
[t, wp] = triangle(fp, T, d); %Here is your basic triangle waveform
wm = -wp; % positive and negative halves
s = sin(2*pi*f .* t); % sine wave of fundamental frequency
pp = s > wp; % positive half test
pm = s < wm; % negative half test
pwm = pp - pm; % this should be the whole thing
figure(2)
clf
plot(t, pwm)
title('PWM Waveform of a Sine Wave: Amplitude = 1')
ylabel('On vs. Off')
xlabel('Time, Sec')
% ok: now do a little fourier analysis
Nh = 1:2:35;
fprintf('Fourier Analysis: fundemantal amplitude is 1\n')
for k = 1:length(Nh)
    sn = sin(2*pi*Nh(k)*f .*t);
    fn = 2*sum(sn .* pwm) / length(t);
    fprintf('Harmonic %3.Of Amplitude = %g\n', Nh(k), fn);
end
s = . 25*sin(2*pi*f .* t); % sine wave of fundamental frequency
pp = s > wp; % positive half test
pm = s < wm; % negative half test
pwm = pp - pm; % this should be the whole thing
fprintf('Fourier Analysis: fundemantal amplitude is 0.25\n')
```

```
for k = 1:length(Nh)
    sn = sin(2*pi*Nh(k)*f .*t);
    fn = 2*sum(sn .* pwm) / length(t);
    fprintf('Harmonic %3.Of Amplitude = %g\n', Nh(k), fn);
end
figure(3)
clf
plot(t, pwm)
figure(4)
clf
plot(t, s, t, wm)
----------------
function [t, w] = triangle(f, T, d)
% generates a triangle wave of amplitude 1
% frequency f
% length T
% increment d
T_c = 1/f; % length of one cycle
Ni = floor(.5*T_c/d); % number of increments per half cycle
Nc = floor(T*f); % number of cycles
%pause
% build first cycle
ws = (0:Ni-1) ./ (Ni-1); % first half cycle
wt = (Ni-1:-1:0) ./ (Ni-1); % second half cycle
wc = [ws wt]; % first full cycle
w = wc; % start concatenating
for k = 1:Nc-1,
    w = [w wc];
end % all done
t = 0:d:d*(length(w)-1); % so t is the same length as w
```

MIT OpenCourseWare
http://ocw.mit.edu

6.061 / 6.690 Introduction to Electric Power Systems

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

