Have a Safe Flight: Bon Voyage!

Mariela Buchin, Wonron Cho, Scott Fisher

Making the "Smart Flight Vest"

- Mount two angular rate sensors onto the upper body of the flight vest
- Separate device
will measure throttle

Controlling Throttle

- Want functionality of being able to adjust and set throttle
- Will mount a handle onto resistor arm to imitate a throttle lever

Main Block Diagram

Measuring the Roll of the Plane

Please see http://www.grc.nasa.gov/WWW/K-12/airplane/roll.html

Measuring the Pitch of the Plane

Please see http://www.grc.nasa.gov/WWW/K-12/airplane/pitch.html

ADXRS300 - Angular Rate Sensor

- Contains an internal Gyroscope
- Output voltage proportional to the angular rate about the axis perpendicular to the surface of the chip
- Range of rate: +/- 300 \% sec
- Zero movement: outputs 2.5 V

Getting an Angle from Angular Rate

- AngleRate = K * (ADCVoltage-ZeroVoltage)
- K is some constant (Degs/sec/volt)
- Angle = Angle + AngleRate*deltaT
- May need calibration for ZeroVoltage

Interfacing the ADXRS300

- Will use an analog to digital converter AD7895AN-2
- Output of the AD7895 is 12 bits
- Uses a reference potential of 2.5 volts
- Serial Output

Interfacing the ADXRS300

- Bandwidth of the ADXRS300: 400Hz
- Minimum sampling rate for ADC is 800 Hz
- We'll use 10 KHz sampling rate

Timing Operation Diagram

Data Read Operation

- AD7895 uses 16 clock cycles to output the digital data bits resulting from the conversion
- It outputs 4 leading zeros, then the 12 bits of actual data, starting with the

Forces Determined in Physics Module

- Forces and Anglular Velocities determined in Minor FSM
- Positions and Angles calculated in Physics FSM

Physics FSM

Forces on an Airplane

Please see http://www.grc.nasa.gov/WWW/K-12/airplane/forces.html

Force equations

- Thrust: F = ma
- Weight: F = mg
lift $=C_{L} \times\left(\frac{1}{2} \rho V^{2}\right) \times S$
drag $=C_{D} \times\left(\frac{1}{2} \rho V^{2}\right) \times A$

Please see:

http://www.grc.nasa.gov/WWW/K-12/WindTunnel/Activities/lift_formula1.GIF
http://www.grc.nasa.gov/WWW/K-12/airplane/lifteq.html
http://www.grc.nasa.gov/WWW/K-12/airplane/drageq.html

Aircraft Rotations

Please see http://www.grc.nasa.gov/WWW/K-12/airplane/rotations.html

Rotation produces Vectors

Please see http://www.grc.nasa.gov/WWW/K-12/airplane/turns.html

Displaying the State of the Flight

- The pilot flying the plane stands in front of a monitor that displays the main features of an airplane console, including an attitude indicator and a display for altitude, ascent rate, and velocity.

Video Display Block Diagram

Screenshot

AIIIIUNE ASGENT RAIE VELOBITY DIIEETION

30000 0000 400 30

Displaying numbers

- Approach 1- Instantiate rectangles to form numbers (similar to how MIT logo was made in the Pong game)
- Approach 2- Create and store table of ASCII characters in memory and render characters when they are needed

ALIIIUDE ASEENI RAIE
 30000 0001

Attitude Indicator

- The Attitude Indicator Module takes in two angles (pitch and roll).
- The roll of the airplane determines
 the slope of the white line (horizon) .
- The area above is colored blue (sky).
- The area below is colored brown (earth).
- The pitch determines the position of the horizon.

Attitude Indicator - Algorithm

The goal is to make the horizon shift and rotate in response to pitch and roll. When airplane is flying "sideways," a different equation is used to draw the line representing the horizon.

When Roll is not $\pi / 2$ or $-\pi / 2$
$\mathrm{y}=(\mathrm{x}+\mathrm{B} * \sin (\text { Roll }))^{*} \tan ($ Roll $)+\mathrm{B} * \cos ($ Roll $)$

When Roll is $\pi / 2$ or $-\pi / 2$
$x=-B^{*} \sin ($ Roll $)$

