3.155J/6.152J

Microelectronic Processing
Spring Term, 2005
Bob O'Handley

Martin Schmidt

Problem Set 3 SOLUTIONS
Sept.21, 2005
Due Oct. 2, 2005

Problem 1

$$
\begin{gathered}
C(z, t)=\frac{Q}{\sqrt{\pi D t}} \exp \left(-\frac{z^{2}}{4 D t}\right) \\
\frac{d C}{d t}=\left(-\frac{Q}{2 t \sqrt{\pi D t}}+\frac{Q}{\sqrt{\pi D t}} \frac{z^{2}}{4 D t^{2}}\right) \exp \left(-\frac{z^{2}}{4 D t}\right)=C(z, t)\left(\frac{z^{2}}{2 D t}-1\right) \frac{1}{2 t} \\
\frac{d C}{d z}=\frac{-2 z}{4 D t} C(z, t) \\
\frac{d^{2} C}{d z^{2}}=-\frac{2}{4 D t} C(z, t)+\frac{4 z^{2}}{16 D^{2} t^{2}} C(z, t)=C(z, t)\left(\frac{2 z^{2}}{4 D t}-1\right) \frac{2}{4 D t}
\end{gathered}
$$

Thus,

$$
\frac{d C(z, t)}{d t}=D \frac{d^{2} C(z, t)}{d z^{2}}
$$

Problem 2

$D_{0}(900 \mathrm{C})=1, E_{0}(900 \mathrm{C})=3.5 \mathrm{eV}, D=9.46 \times 10^{-16} \mathrm{~cm}^{2} / \mathrm{s}$. Using $t=1800 \mathrm{~s}$, the diffusion length is $a=26.1 \mathrm{~nm}$.

Problem 3

a) From Fig. 1.16 in Plummer or 3.4 in Campbell, $n_{i} \approx 1 \times 10^{18} \mathrm{~cm}^{-3}$.
b) i) From Plummer Table 7-5:

$$
\begin{aligned}
& D^{0} .0=0.05 \mathrm{~cm}^{2} / \mathrm{s}, D^{0} . \mathrm{E}=3.5 \mathrm{eV}, D^{+} .0=0.95, D^{+} . E=3.5 \\
& \text { Using the relation } D=D^{0} .0 \exp \left(-\frac{D^{0} . E}{k T}\right)+D^{+} .0 \exp \left(-\frac{D^{+} . E}{k T}\right)\left(\frac{n}{n_{i}}\right)+\ldots \\
& D^{\mathrm{eff}}=1.19 \times 10^{-19} \mathrm{~cm}^{2} \mathrm{~s}^{-1}+2.26 \times 10^{-18} \mathrm{~cm}^{2} \mathrm{~s}^{-1}\left(\frac{n}{10^{18} \mathrm{~cm}^{-3}}\right)
\end{aligned}
$$

For $N_{\mathrm{D}}=2 \times 10^{18}$, Plummer Eq. 1.16 or 1.17 gives $n=2.41 \times 10^{18}$.

Then $D^{\text {eff }}=1.19 \times 10^{-19}+5.46 \times 10^{-18}=5.57 \times 10^{-18} \mathrm{~cm}^{2} / \mathrm{s}$.
For $N_{\mathrm{D}}=1 \times 10^{18}, n=1.62 \times 10^{18}$.
Then $D^{\text {eff }}=1.19 \times 10^{-19}+3.66 \times 10^{-18}=3.78 \times 10^{-18} \mathrm{~cm}^{2} / \mathrm{s}$.
c) Diffusion lengths in the two cases are $a=2 \sqrt{D t}=2.83 \mathrm{~nm}$ and 2.33 nm , respectively.

Problem 4

a) The idea of this failed problem was to calculate the dose of a dopant diffused into a substrate under high, constant external concentration conditions so that the diffusion constant is clearly dependent on depth. (One could only get the exact $c(x)$ profile by numerical integration of the diffusion equation.)

b) This part was aimed at probing your realization that now the boundary conditions had changed and the diffusion was done from a constant dose (erfc solution). If the numbers had been more carefully selected, you could have assumed that the junction depth would increase with time as $(D t)^{1 / 2}$ or inverted the solution

$C(z, t)=C_{s} \exp \left(-\frac{z^{2}}{4 D t}\right)=\frac{Q}{\sqrt{\pi D t}} \exp \left(-\frac{z^{2}}{4 D t}\right)=N_{A}=10^{15} \mathrm{~cm}^{-3}$
to solve for the time required to put the junction at the desired depth. But this is not easily solved for t unless you first work under the assumption that the exponential time dependence dominates and start with, say $t=10 \mathrm{~s}$ in the preexponential factor (then iterate).
This approach is also flawed by assuming that the solution can be arrived at analytically, even if you chose the diffusion constant at the background dopant concentration. Clearly, the greater diffusion rate closer to the surface, where the impurity concentration is greater, would square-up the diffusion profile (see sketch, dotted line) and accelerate the diffusion
 at greater depth, moving the estimated junction deeper, or the time to achieve a given depth, overestimated.

Problem 5

a) At 40 keV , boron from Fig. $8-3, R_{\mathrm{p}} \approx 145 \mathrm{~nm}$ and $\Delta R_{\mathrm{p}} \approx 58 \mathrm{~nm}$.
b) Given $Q=10^{12} \mathrm{~cm}^{-2}$ and ΔR_{p} above, $Q=(2 \pi)^{1 / 2} \Delta R_{\mathrm{p}} c_{\mathrm{p}}$ gives $c_{\mathrm{p}}=6.88 \times 10^{16} \mathrm{~cm}^{-3}$. c) $c(x)=c_{p} \exp \left(-\frac{\left(x-R_{p}\right)^{2}}{2 \Delta R_{p}^{2}}\right)$ at $x=300 \mathrm{~nm}$ gives $c(300)=1.53 \times 10^{15} \mathrm{~cm}^{-3}$.

Problem 6

Given $R_{\mathrm{p}}=0.2 \mu \mathrm{~m}(200 \mathrm{~nm})$ demands an implant of boron at about 60 keV (Fig. 83). At this energy $\Delta R_{\mathrm{p}} \approx 52.5 \mathrm{~nm}$, so the dose giving a peak concentration of $10^{17} \mathrm{~cm}^{-}$ ${ }^{3}$ is easily calculated from $Q=(2 \pi)^{1 / 2} \Delta R_{\mathrm{p}} c_{\mathrm{p}}$ to be $1.3 \times 10^{12} \mathrm{~cm}^{-2}$. For a background doping of $10^{15} \mathrm{~cm}^{-3}$, the junction depth before diffusion is given by inverting $c(x)=c_{p} \exp \left(-\frac{\left(x-R_{p}\right)^{2}}{2 \Delta R_{p}^{2}}\right)$ to get two junctions, one at $x_{\mathrm{jct}}=40.7 \mathrm{~nm}$ the other at 359 nm .

