Gas kinetics, vacuum technology

Reading Assignment: Class notes.

Optional: Kinetics, Vac. Tech.: Campbell, 10.1-1.4 (or Ohring Ch. 2) .
Useful constants: $\quad k_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{~J} /$ Kelvin, $\quad 1 \mathrm{~atm}=10^{5} \mathrm{~Pa}$ or $\mathrm{N} / \mathrm{m}^{2}$,
$N_{\text {A }}=1 /$ mass proton in grams $=6.02 \times 10^{23}$ (at/gram-mole) ,
$R=N_{\mathrm{A}} \times k_{\mathrm{B}}=8.31 \mathrm{~J} / \mathrm{K}-\mathrm{mole}$,

1. Consider a vacuum system being prepared for a reactive deposition at room temperature; the chamber has been pumped down to a pressure of 10^{-6} Torr and backfilled with O_{2} to a pressure of 5 mT . (Make an intelligent estimate of the diameter of an O_{2} molecule.)
a) Calculate the mean free path, λ, of the O_{2} molecules at this pressure.
b) Calculate the volume density of O_{2} molecules.
c) Calculate the flux of O_{2} molecules, J (molecules/($\left.\mathrm{cm}^{2}-\mathrm{s}\right)$) impinging on a surface in the chamber.
d) Calculate the average speed of an O_{2} molecule in this case.
2. Kevin and Karen each have their own uhv deposition chambers but they share a bank of cryo-pumps that sits between their chambers and are used for roughing out their chambers without the oil contamination that can come from a mechanical pump. These cryo-pumps are permanently connected to the two chambers with 1 -inch inner diameter stainless-steel piping of length 4 feet to each chamber. (Each chamber has its own valve for these pumps so Kevin and Karen can operate on their own schedules.)
Kevin's ion pump breaks down and he asks Karen if he can run an 8-foot length of stainless pipe, 1-inch ID, to a blank flange on her chamber till his ion pump is refurbished. The next time Karen pumps down with Kevin's chamber connected to hers, it takes a little longer but her chamber eventually gets down to 10^{-9} Torr. Even after a week Kevin's chamber is still in the 10^{-5} range Torr. Why? (One or two sentences should do; maybe an equation.)

Read: Plummer Secs. 9.1, 9.21-9.22. Campbell, Ch. 10, Secs. 1-3, all of Ch. 13.

CVD

3. Assume chemical equilibrium is established in a CVD reactor according to the equation:

$$
\mathrm{SiH}_{4}(\mathrm{~g}) \leftrightarrow \mathrm{SiH}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

The pressure is maintained at 10 mT and the temperature at $500^{\circ} \mathrm{C}$. If the equilibrium constant for the reaction is $K(T)=2 \times 10^{9}$ (Torr) $\exp \left[-1.8 \mathrm{eV} /\left(k_{\mathrm{B}} T\right)\right.$], find the partial pressure of each gas assuming $p\left(\mathrm{H}_{2}\right) \approx p\left(\mathrm{Si} \mathrm{H}_{2}\right)$.
4. Assume a CVD process based on the reaction: $2 \mathrm{AB}(\mathrm{g}) \leftrightarrow 2 \mathrm{~A}(\mathrm{~s})+\mathrm{B}_{2}(\mathrm{~g})$.
a) Sketch and briefly describe the atomic-scale steps that control the reaction.
b) How would you distinguish between i) the reaction-limited and ii) a transportlimited cases?
c) Sketch the variation of the CVD growth rate as functions of the square root of the gas flow velocity and sketch the variation of the log of the CVD growth rate as a function of $1 / T$.
d) If you wanted to increase the growth rate of a transport-limited CVD process, what processing variables would be most effective? (List them in decreasing order of efficacy.)

