3.155J/6.152J

Microelectronic Processing
Fall Term, 2005
Bob O'Handley
Martin Schmidt

Problem Set 7

1. You need to fabricate a diffraction grating of SiO_{2} lines on Si . The lines are to have a square cross section, $l \times l$, and a gap of l. See figure.
a) What must be the dimensions of the mask, l_{m}, and its window, l_{g}, in terms of l to achieve the desired grating. Assume the etch anisotropy is $A=0.85$.
a) For etching completely through the SiO_{2} film, $A=1-b / l$, so $b=0.15 \mathrm{l}$. From the geometry in the figure, $l_{\mathrm{m}}=l+2 b=l+0.3 l$. Thus $l_{\mathrm{m}}=1.3 l$ and $l_{\mathrm{g}}=2 l-l_{\mathrm{m}}=0.7 l$.

b) Use Fig. 10-23 in Plummer (p. 28 in "dry etch" class notes) to determine the minimum thickness of photoresist applied in terms of l, if you are going to be using an etchant of $40 \% \mathrm{H}_{2}$ in $\mathrm{CF}_{4}+\mathrm{H}_{2}$.
b) From the figure it appears that at $40 \% \mathrm{H}_{2}$, the etch rates of SiO_{2} and photoresist are $r_{\mathrm{SiO} 2} \approx 42 \mathrm{~nm} / \mathrm{min}$ and $r_{\mathrm{PR}} \approx 11$ or $12 \mathrm{~nm} / \mathrm{min}$, respectively. Thus, the photoresist must be at least 0.28 times the thickness of the SiO_{2}, so aim for at least 0.31 of PR.
